Addressing complexity for educating the future-ready workforce in STEM fields

MINTco@NRW from a mathematics educational perspective

Authors

DOI:

https://doi.org/10.31129/LUMAT.12.4.2394

Keywords:

STEM Education, 21st century skills, complexity, future workforce, collaborative problem solving, project-based learning

Abstract

Educating the future-ready workforce in STEM fields is complex. This is demonstrated by numerous publications in the context of the fourth industrial revolution, the 21st century skills, and the development of integrated models in STEM Education. In this article, this complexity is first addressed on a theoretical level by reviewing developments in the world of work and the associated challenges for General Didactics and Subject Specific Education. A synthesis of the contrasting perspectives shows that empirical research requires sufficiently complex settings. With MINTco@NRW, such a setting is presented, and its complexity characteristics are identified. In addition, insights are provided into the research perspectives associated with the project. They are mathematical-relatedness, students’ self-efficacy and the mentoring of STEM problem solving. Research questions that arise are in the contexts of performance assessments in such settings and teacher training to provide the necessary skills to make learners future-ready. The conclusion is that integrated STEM education for a future-ready workforce requires scientific approaches that make fruitful use of the mentioned complexities.

References

Balliester, T., & Elsheikhi, A. (March 2018). The future of work: a literature review (Research Department Working Paper No. 29). International Labour Office. https://englishbulletin.adapt.it/wp-content/uploads/2018/07/wcms_625866.pdf

Bandura, A. (1997). Self-Efficacy: the exercise of control. W. H. Freeman and Company.

Basham, J. D., Israel, M., & Maynard, K. (2010). An Ecological Model of STEM Education: Operationalizing STEM for All. Journal of Special Education Technology, 25(3), 9–19. https://doi.org/10.1177/016264341002500303 DOI: https://doi.org/10.1177/016264341002500303

Battelle for Kids. (2023). Framework for 21st century learning: Definitions. https://www.battelleforkids.org/wp-content/uploads/2023/11/P21_Framework_DefinitionsBFK.pdf

Battelle for Kids. (2024, January 8). P21 Resources | 21st Century Learning Resources | Battelle for Kids. https://www.battelleforkids.org/insights/p21-resources/

Baumanns, L., & Rott, B. (2022). The process of problem posing: Development of a descriptive phase model of problem posing. Educational Studies in Mathematics, 110(2), 251–269. https://doi.org/10.1007/s10649-021-10136-y DOI: https://doi.org/10.1007/s10649-021-10136-y

Bruner, J. S. (1983). In search of mind: Essays in autobiography. Harpercollins. https://pure.mpg.de/pubman/faces/viewitemoverviewpage.jsp?itemid=item_2301309

Camilli, G., & Hira, R. (2019). Introduction to Special Issue—STEM Workforce: STEM Education and the Post-Scientific Society. Journal of Science Education and Technology, 28(1), 1–8. https://doi.org/10.1007/s10956-018-9759-8 DOI: https://doi.org/10.1007/s10956-018-9759-8

Caratozzolo, P., Bravo, E., Garay-Rondero, C., & Membrillo-Hernandez, J. (2021). Educational Innovation: Focusing on enhancing the skills of Generation Z workforce in STEM. In 2021 World Engineering Education Forum/Global Engineering Deans Council (WEEF/GEDC). IEEE. https://doi.org/10.1109/weef/gedc53299.2021.9657304 DOI: https://doi.org/10.1109/WEEF/GEDC53299.2021.9657304

Daily, S. B., & Eugene, W. (2013). Preparing the Future STEM Workforce for Diverse Environments. Urban Education, 48(5), 682–704. https://doi.org/10.1177/0042085913490554 DOI: https://doi.org/10.1177/0042085913490554

Détienne, F., Baker, M., & Burkhardt, J.‑M. (2012). Perspectives on quality of collaboration in design. CoDesign, 8(4), 197–199. https://doi.org/10.1080/15710882.2012.742350 DOI: https://doi.org/10.1080/15710882.2012.742350

Dilling, F., Rott, B., & Witzke, I. (2022). Mathe in physikalischen Kontexten unterrichten: Chancen nutzen, Herausforderungen begegnen [Teach mathematics in physics contexts: Seize opportunities, meet challenges]. Mathematik Lehren(231), 2–6.

Falloon, G., Hatzigianni, M., Bower, M., Forbes, A., & Stevenson, M. (2020). Understanding K-12 STEM Education: A Framework for Developing STEM Literacy. Journal of Science Education and Technology, 29(3), 369–385. https://doi.org/10.1007/s10956-020-09823-x DOI: https://doi.org/10.1007/s10956-020-09823-x

Fukumura, Y. E., Gray, J. M., Lucas, G. M., Becerik-Gerber, B., & Roll, S. C. (2021). Worker Perspectives on Incorporating Artificial Intelligence into Office Workspaces: Implications for the Future of Office Work. International Journal of Environmental Research and Public Health, 18(4), 1690. https://doi.org/10.3390/ijerph18041690 DOI: https://doi.org/10.3390/ijerph18041690

González-Pérez, L. I., & Ramírez-Montoya, M. S. (2022). Components of Education 4.0 in 21st Century Skills Frameworks: Systematic Review. Sustainability, 14(3), 1493. https://doi.org/10.3390/su14031493 DOI: https://doi.org/10.3390/su14031493

Grzegorczyk, M., Mariniello, M., Nurski, L., & Schraepen, T. (2021). Blending the physical and virtual: A hybrid model for the future of work (Bruegel Policy Contribution 14/2021). Brussels: Bruegel. https://www.econstor.eu/handle/10419/251067

Hughson, T. A., & Wood, B. E. (2022). The OECD Learning Compass 2030 and the future of disciplinary learning: A Bernsteinian critique. Journal of Education Policy, 37(4), 634–654. https://doi.org/10.1080/02680939.2020.1865573 DOI: https://doi.org/10.1080/02680939.2020.1865573

Hußmann, S., Rezat, S., & Sträßer, R. (2016). Subject Matter Didactics in Mathematics Education. Journal Für Mathematik-Didaktik, 37(S1), 1–9. https://doi.org/10.1007/s13138-016-0105-5 DOI: https://doi.org/10.1007/s13138-016-0105-5

Johnson, C. C., Peters-Burton, E. E., & Moore, T. J. (2021). Stem road map 2.0: A framework for integrated STEM education in the innovation age (C. C. Johnson, E. E. Peters-Burton, & T. J. Moore, Eds.) (2nd edition). Routledge, Taylor & Francis Group. https://doi.org/10.4324/9781003034902 DOI: https://doi.org/10.4324/9781003034902

Käpnick, F. (1998). Mathematisch begabte Kinder: Modelle, empirische Studien und Förderungsprojekte für das Grundschulalter [Mathematically gifted children: models, empirical studies, and support projects for primary students]. Peter Lang.

Kennedy, T. J., & Sundberg, C. W. (2020). 21st Century Skills. Science Education in Theory and Practice, 479–496. https://doi.org/10.1007/978-3-030-43620-9_32 DOI: https://doi.org/10.1007/978-3-030-43620-9_32

Kirsch, A., & Scherk, J. (2012). Aspects of Simplification in Mathematics Teaching. In Teaching As A Reflective Practice (pp. 267–284). Routledge. https://doi.org/10.4324/9780203357781-21 DOI: https://doi.org/10.4324/9780203357781-21

Klafki, W. (1975). Studien zur Bildungstheorie und Didaktik [Studies in educational theory and didactics]. Beltz Verlag.

Klafki, W. (1985). Neue Studien zur Bildungstheorie und Didaktik [New Studies in educational theory and didactics]: Beiträge zur kritisch-konstruktiven Didaktik. Beltz.

Klafki, W. (1998). Zentralprobleme der modernen Welt und die Aufgaben der Schule: Grundzüge internationaler Erziehung [Central problems of the modern world and the duties of schools: Basic principles of international education]. https://archiv.ub.uni-marburg.de/sonst/1998/0003/k06.html

Klafki, W. (2000). The Significance of Classical Theories of Bildung for a Contemporary Concept of Allgemeinbildung. In I. Westbury, S. Hopmann, & K. Riquarts (Eds.), Studies in curriculum theory. Teaching as a reflective practice: The German Didaktik tradition. L. Erlbaum Associates.

Lerman, S. (Ed.). (2015). Encyclopedia of mathematics education [Enhanced Credo edition]. Springer; Credo Reference.

Li, L. (2022). Reskilling and Upskilling the Future-ready Workforce for Industry 4.0 and Beyond. Information Systems Frontiers, 1–16. https://doi.org/10.1007/s10796-022-10308-y DOI: https://doi.org/10.1007/s10796-022-10308-y

Maass, K., Geiger, V., Ariza, M. R., & Goos, M. (2019). The Role of Mathematics in interdisciplinary STEM education. ZDM – Mathematics Education, 51(6), 869–884. https://doi.org/10.1007/s11858-019-01100-5 DOI: https://doi.org/10.1007/s11858-019-01100-5

Marx, B., & Stoffels, G. (2023). Authentic-STEM: Mit Mentoren offene und langfristige mathematikhaltige Projektarbeit begleiten [Authentic STEM: Supporting open-ended, long-term math-containing project work with mentors]. https://doi.org/10.17877/DE290R-23381

McComas, W. F. (2013). "21st-Century Skills". In W. F. McComas (Ed.), The language of science education: An expanded glossary of key terms and concepts in science teaching and learning (p. 1). Sense Publishers. https://doi.org/10.1007/978-94-6209-497-0_1 DOI: https://doi.org/10.1007/978-94-6209-497-0_1

National Education Association. (2011). Preparing 21st century students for a global society: An educator's guide to" the four Cs".

Neumann, I., Pigge, C., & Heinze, A. (2018). Mathematische Lernvoraussetzungen für MINT-Studiengänge aus Sicht der Hochschulen [Mathematical prerequisites for STEM degree programs from the perspective of universities]. Mitteilungen der Gesellschaft für Didaktik der Mathematik(105), 22–26. https://ojs.didaktik-der-mathematik.de/index.php/mgdm/article/view/820/0

The OECD Future of Education and Skills 2030 Informal Working Group. (2019). OECD Future of Education and Skills 2030: OECD Learning Compass 2030. A Series of Concept Notes. OECD.

Okenwa-Emegwa, L., Paillard-Borg, S., Tinghög, P., Saboonchi, F., & Strauss, E. von (2017). A global workspace is the emerging reality for future public health workforce. Socialmedicinsk Tidskrift, 94(3), 132–140. https://www.diva-portal.org/smash/record.jsf?pid=diva2:1139856

Pan, J., Cho, T. Y., Sun, M., Debnath, R., Lonsdale, N., Wilcox, C., & Bardhan, R. (2023). Future workspace needs flexibility and diversity: A machine learning-driven behavioural analysis of co-working space. PLOS ONE, 18(10), e0292370. https://doi.org/10.1371/journal.pone.0292370 DOI: https://doi.org/10.1371/journal.pone.0292370

Pasquinelli, E., Farina, M., Bedel, A., & Casati, R. (2021). Naturalizing Critical Thinking: Consequences for Education, Blueprint for Future Research in Cognitive Science. Mind, Brain, and Education, 15(2), 168–176. https://doi.org/10.1111/mbe.12286 DOI: https://doi.org/10.1111/mbe.12286

Peterßen, W. H. (2000). Fächerverbindender Unterricht: Begriff-Konzept-Planung-Beispiele [Interdisciplinary teaching: conception, conceptualization, planning, examples]. ein Lehrbuch. Oldenbourg. https://ixtheo.de/record/317922912

Playton, S. C., Childers, G. M., & Hite, R. L. (2024). Measuring STEM Career Awareness and Interest in Middle Childhood STEM Learners: Validation of the STEM Future-Career Interest Survey (STEM Future-CIS). Research in Science Education, 54(2), 167–184. https://doi.org/10.1007/s11165-023-10131-8 DOI: https://doi.org/10.1007/s11165-023-10131-8

Priemer, B., Eilerts, K., Filler, A., Pinkwart, N., Rösken-Winter, B., Tiemann, R., & Belzen, A. U. zu (2020). A framework to foster problem-solving in STEM and computing education. Research in Science & Technological Education, 38(1), 105–130. https://doi.org/10.1080/02635143.2019.1600490 DOI: https://doi.org/10.1080/02635143.2019.1600490

Roberts, T., Maiorca, C., Jackson, C., & Mohr-Schroeder, M. (2022). Integrated STEM as Problem-Solving Practices. Investigations in Mathematics Learning, 14(1), 1–13. https://doi.org/10.1080/19477503.2021.2024721 DOI: https://doi.org/10.1080/19477503.2021.2024721

Rott, B., Specht, B., & Knipping, C. (2021). A descriptive phase model of problem-solving processes. ZDM – Mathematics Education, 53(4), 737–752. https://doi.org/10.1007/s11858-021-01244-3 DOI: https://doi.org/10.1007/s11858-021-01244-3

Skott, J. (2019). Understanding mathematics teaching and learning "in their full complexity". Journal of Mathematics Teacher Education, 22(5), 427–431. https://doi.org/10.1007/s10857-019-09446-z DOI: https://doi.org/10.1007/s10857-019-09446-z

Steiner, H.‑G. (1985). Theory of Mathematics Education (TME): An Introduction. For the Learning of Mathematics, 5(2), 11–17.

Stoffels, G. (2017). Tomaten erzeugen Parabeln: Analyse einer Aufgabe mit nicht authentischem Realkontext aus authentischen Perspektiven [Tomatoes create parabolas: analyzing a task with a non-authentic real-life context from authentic perspectives]. Der Mathematikunterricht, 63(5), 3–11.

Stoffels, G. (2023). Authentic-STEM: Opening long-term domains of experience for fostering students’ and mentors’ self-efficacy through mathematics. In Alfréd Rényi Institute of Mathematics (Chair), Thirteenth Congress of the European Society for Research in Mathematics Education (CERME13). Symposium conducted at the meeting of Eötvös Loránd University of Budapest, Budapest, Hungary. https://hal.science/hal-04420539/

Stoffels, G. (2024). „Flat Earthers“, Ernsthaft? – Weltbilder mit mathematischen Methoden interdisziplinär betrachten ["Flat Earthers", seriously? – Taking an interdisciplinary perspective on worldviews using mathematical methods]. In I. Witzke, K. Holten, & F. Dilling (Eds.), MINTUS - Beiträge zur mathematisch-naturwissenschaftlichen Bildung. Interdisziplinäres Forschen und Lehren in den MINT-Didaktiken: Mathematik mit Informatik, Naturwissenschaften und Technik in der Bildungsforschung vernetzt denken [Interdisciplinary research and teaching in STEM didactics: Thinking about mathematics, computer science, natural sciences, and technology in a networked way in educational research] (1. Auflage 2024, pp. 9–33). Springer Fachmedien Wiesbaden GmbH; Springer Spektrum. https://doi.org/10.1007/978-3-658-43873-9_2 DOI: https://doi.org/10.1007/978-3-658-43873-9_2

Stoffels, G., & Hohmann, S. (2022). Comparison: Stochastics with a Focus on Probability Theory. In F. Dilling & S. F. Kraus (Eds.), Research. Comparison of mathematics and physics education (pp. 277–297). Springer Spektrum. https://doi.org/10.1007/978-3-658-36415-1_20 DOI: https://doi.org/10.1007/978-3-658-36415-1_20

Stoffels, G., & Holten, K. (2022). MINT-Pro2Digi: Authentisches projektorientiertes mathematisches Problemlösen in außerunterrichtlichen digitalen Kontexten [MINT-Pro2Digi: Authentic project-based mathematical problem solving in extracurricular digital contexts]. In F. Dilling, F. Pielsticker, & I. Witzke (Eds.), MINTUS – Beiträge zur mathematisch-naturwissenschaftlichen Bildung. NEUE PERSPEKTIVEN AUF MATHEMATISCHE LEHR LERNPROZESSE MIT DIGITALEN MEDIEN (pp. 47–71). Springer. https://doi.org/10.1007/978-3-658-36764-0_3 DOI: https://doi.org/10.1007/978-3-658-36764-0_3

Stoffels, G., Witzke, I., & Holten, K. (2022). Comparison: Differential Calculus Through Applications. In F. Dilling & S. F. Kraus (Eds.), Research. Comparison of mathematics and physics education (pp. 227–242). Springer Spektrum. https://doi.org/10.1007/978-3-658-36415-1_17 DOI: https://doi.org/10.1007/978-3-658-36415-1_17

Strack, R., Carrasco, M., Kolo, P., Nouri, N., Priddis, M., & George, R. (March 2021). The Future of Jobs in the Era of AI. Faethm AI; Boston Consulting group. https://web-assets.bcg.com/f5/e7/9aa9f81a446198ac5402aaf97a87/bcg-the-future-of-jobs-in-the-era-of-ai-mar-2021-r-r.pdf

Thornhill-Miller, B., Camarda, A., Mercier, M., Burkhardt, J.‑M., Morisseau, T., Bourgeois-Bougrine, S., Vinchon, F., El Hayek, S., Augereau-Landais, M., Mourey, F., Feybesse, C., Sundquist, D., & Lubart, T. (2023). Creativity, Critical Thinking, Communication, and Collaboration: Assessment, Certification, and Promotion of 21st Century Skills for the Future of Work and Education. Journal of Intelligence, 11(3), 54. https://doi.org/10.3390/jintelligence11030054 DOI: https://doi.org/10.3390/jintelligence11030054

Tyson, R. (2016). What Would Humboldt Say: A Case of General Bildung in Vocational Education? International Journal for Research in Vocational Education and Training, 3(3), 230–249. https://doi.org/10.13152/IJRVET.3.3.4 DOI: https://doi.org/10.13152/IJRVET.3.3.4

Uhden, O. (2012). Mathematisches Denken Im Physikunterricht [Mathematical thinking in physics lessons]: Theorieentwicklung und Problemanalyse. Studien Zum Physik- und Chemielernen Ser: v. 133. Logos Verlag Berlin. https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=5223915

Transforming our world, September 25, 2015.

Utsch, A. (2002). Proof of Pareto's 80/20 law and precise limits for ABC-analysis. Technical Report (c). University of Marburg.

van Laar, E., van Deursen, A. J., van Dijk, J. A., & Haan, J. de (2017). The relation between 21st-century skills and digital skills: A systematic literature review. Computers in Human Behavior, 72, 577–588. https://doi.org/10.1016/j.chb.2017.03.010 DOI: https://doi.org/10.1016/j.chb.2017.03.010

Wächter, L. (2023). Logistik [Logistics]. In L. Wächter (Ed.), Lehrbuch. Groß- und Außenhandel: Einführung in die Handelsbetriebslehre mit historischen und praktischen Bezügen [Wholesale and foreign trade: Introduction to business administration with historical and practical references] (pp. 329–385). Springer Gabler. https://doi.org/10.1007/978-3-658-39993-1_10 DOI: https://doi.org/10.1007/978-3-658-39993-1_10

Weick, K. E. (1993). The Collapse of Sensemaking in Organizations: The Mann Gulch Disaster. Administrative Science Quarterly, 38(4), 628. https://doi.org/10.2307/2393339 DOI: https://doi.org/10.2307/2393339

Weinert, F. E. (2002). Leistungsmessungen in Schulen [Performance assessments in schools] (2. Aufl.). Beltz. https://ixtheo.de/record/1620303078

Willbergh, I. (2016). Bringing teaching back in: The Norwegian NOU The school of the future in light of the Allgemeine Didaktik theory of Wolfgang Klafki. https://uia.brage.unit.no/uia-xmlui/bitstream/handle/11250/2599414/ilmi%2bw.pdf?sequence=2 DOI: https://doi.org/10.17585/ntpk.v2.268

Winter, H. (1996). Mathematikunterricht und Allgemeinbildung [Mathematics education and basic knowledge]. Mitteilungen Der Deutschen Mathematiker-Vereinigung, 4(2). https://doi.org/10.1515/dmvm-1996-0214 DOI: https://doi.org/10.1515/dmvm-1996-0214

Witzke, I., Holten, K., & Dilling, F. (Eds.). (2024). MINTUS - Beiträge zur mathematisch-naturwissenschaftlichen Bildung. Interdisziplinäres Forschen und Lehren in den MINT-Didaktiken: Mathematik mit Informatik, Naturwissenschaften und Technik in der Bildungsforschung vernetzt denken [Interdisciplinary research and teaching in STEM didactics: Thinking about mathematics, computer science, natural sciences, and technology in a networked way in educational research] (1. Auflage 2024). Springer Fachmedien Wiesbaden GmbH; Springer Spektrum. https://doi.org/10.1007/978-3-658-43873-9 DOI: https://doi.org/10.1007/978-3-658-43873-9

Yin, R. K. (2014). Case Study Research (5th ed.). SAGE Publications.

Graphical abstract of the article.

Downloads

Published

2025-07-22

How to Cite

Stoffels, G., Schäfer, J., Köster, J., & Witzke, I. (2025). Addressing complexity for educating the future-ready workforce in STEM fields: MINTco@NRW from a mathematics educational perspective. LUMAT: International Journal on Math, Science and Technology Education, 12(4), 18. https://doi.org/10.31129/LUMAT.12.4.2394