Exploring the implementation of STEM education through mathematical modelling activities in schools
A bibliometric analysis
DOI:
https://doi.org/10.31129/LUMAT.12.4.2444Keywords:
Mathematical modelling, STEM education, school, real-world problems, bibliometric analysisAbstract
For the last few decades, mathematical modelling has been an important topic in school education. Practical approaches to applying mathematical concepts to real-world scenarios are beneficial to students. The process of seeking solutions to real-world problems could foster students’ inquiry skills and have more impactful advantages. However, the implementation of mathematical modelling in schools presents numerous challenges in terms of finding its practical application. Integrating modelling activities with STEM education benefits students by providing practical applications. This research sought to investigate the growth and development of research activities in the area of the integration of STEM education into mathematical modelling by using a bibliometric approach. We followed the PRISMA guidelines and conducted a thorough search in the Scopus database to find important articles published between 2005 and 2025, looking at the article titles, abstracts, and keywords. We conducted an analysis of 139 relevant articles to investigate the implementation of mathematical modelling in the context of integrated STEM education. We analyzed the data using VOSviewer, which performs co-occurrence analyses of authors and keywords. We used Harzing's Publish or Perish software for citation metrics and analysis and Microsoft Excel for frequency analysis. The results indicate that the United States happened to be the most productive country in this field, with 53.24% of the publications. The most productive authors and institutions also show that more than half of the top ten publications in this area were from the United States. The findings of this study will enhance the understanding of integrating STEM education and mathematical modelling in school. It also demonstrates that the scope of this research is relevant, potentially improving the quality of teaching and learning and supporting future studies in the mathematics education field.
References
Aksnes, D. W., & Sivertsen, G. (2019). A Criteria-based Assessment of the Coverage of Scopus and Web of Science. Journal of Data and Information Science, 4(1), 1–21. https://doi.org/10.2478/jdis-2019-0001 DOI: https://doi.org/10.2478/jdis-2019-0001
AlAli, R. (2024). Enhancing 21st century skills through integrated STEM education using project-oriented problem-based learning. Geojournal of Tourism and Geosites, 53(2), 421–430. https://doi.org/10.30892/gtg.53205-1217 DOI: https://doi.org/10.30892/gtg.53205-1217
Asempapa, R. S., & Sturgill, D. J. (2019). Mathematical Modeling: Issues and Challenges in Mathematics Education and Teaching. Journal of Mathematics Research, 11(5), 71. https://doi.org/10.5539/jmr.v11n5p71 DOI: https://doi.org/10.5539/jmr.v11n5p71
Bas-Ader, S., Erbas, A. K., Cetinkaya, B., Alacaci, C., & Cakiroglu, E. (2023). Secondary mathematics teachers’ noticing of students’ mathematical thinking through modeling-based teacher investigations. Mathematics Education Research Journal, 35(0123456789), 81–106. https://doi.org/10.1007/s13394-021-00389-4 DOI: https://doi.org/10.1007/s13394-021-00389-4
Basu, S., Biswas, G., Sengupta, P., Dickes, A., Kinnebrew, J. S., & Clark, D. (2016). Identifying middle school students’ challenges in computational thinking-based science learning. Research and Practice in Technology Enhanced Learning, 11(1). https://doi.org/10.1186/s41039-016-0036-2 DOI: https://doi.org/10.1186/s41039-016-0036-2
Beswick, K., & Fraser, S. (2019). Developing mathematics teachers’ 21st century competence for teaching in STEM contexts. ZDM - Mathematics Education, 51(6), 955–965. https://doi.org/10.1007/s11858-019-01084-2 DOI: https://doi.org/10.1007/s11858-019-01084-2
Blum, W., Niss, M. Applied mathematical problem solving, modelling, applications, and links to other subjects — State, trends and issues in mathematics instruction. Educ Stud Math 22, 37–68 (1991). https://doi.org/10.1007/BF00302716 DOI: https://doi.org/10.1007/BF00302716
Boers, M. (2018). Graphics and statistics for cardiology: Designing effective tables for presentation and publication. In Heart (Vol. 104, Issue 3, pp. 192–200). BMJ Publishing Group. https://doi.org/10.1136/heartjnl-2017-311581 DOI: https://doi.org/10.1136/heartjnl-2017-311581
Cevikbas, M., Kaiser, G., & Schukajlow, S. (2022). A systematic literature review of the current discussion on mathematical modelling competencies: state-of-the-art developments in conceptualizing, measuring, and fostering. Educational Studies in Mathematics, 109(2). https://doi.org/10.1007/s10649-021-10104-6 DOI: https://doi.org/10.1007/s10649-021-10104-6
Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382–1402. https://doi.org/10.1002/asi.21525 DOI: https://doi.org/10.1002/asi.21525
Copur-Gencturk, Y., Choi, H.-J., & Cohen, A. (2023). Investigating teachers’ understanding through topic modeling: a promising approach to studying teachers’ knowledge. Journal of Mathematics Teacher Education, 26(3), 281–302. https://doi.org/10.1007/s10857-021-09529-w DOI: https://doi.org/10.1007/s10857-021-09529-w
Copur-Gencturk, Y., & Li, J. (2023). Teaching matters: A longitudinal study of mathematics teachers’ knowledge growth. Teaching and Teacher Education, 121. https://doi.org/10.1016/j.tate.2022.103949 DOI: https://doi.org/10.1016/j.tate.2022.103949
De Bock, D., & Zwaneveld, B. (2020). From Royaumont to Lyon: Applications and Modelling During the 1960s. In International Perspectives on the Teaching and Learning of Mathematical Modelling (pp. 407–417). Springer Science and Business Media B.V. https://doi.org/10.1007/978-3-030-37673-4_35 DOI: https://doi.org/10.1007/978-3-030-37673-4_35
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070 DOI: https://doi.org/10.1016/j.jbusres.2021.04.070
Ebbelind, A., & Helliwell, T. (2024). Examining interpersonal aspects of a mathematics teacher education lecture. LUMAT, 12, 113–125. https://doi.org/10.31129/LUMAT.12.1.2147 DOI: https://doi.org/10.31129/LUMAT.12.1.2147
Echchakoui, S. (2020). Why and how to merge Scopus and Web of Science during bibliometric analysis: the case of sales force literature from 1912 to 2019. Journal of Marketing Analytics, 8(3), 165–184. https://doi.org/10.1057/s41270-020-00081-9 DOI: https://doi.org/10.1057/s41270-020-00081-9
English, L. D. (2023). Ways of thinking in STEM-based problem solving. ZDM - Mathematics Education, 55(7). https://doi.org/10.1007/s11858-023-01474-7 DOI: https://doi.org/10.1007/s11858-023-01474-7
Estrada, M., Hernandez, P. R., & Schultz, P. W. (2018). A longitudinal study of how quality mentorship and research experience integrate underrepresented minorities into STEM careers. CBE Life Sciences Education, 17(1). https://doi.org/10.1187/cbe.17-04-0066 DOI: https://doi.org/10.1187/cbe.17-04-0066
Galbraith, P., Holton, D., & Turner, R. (2020). Rising to the Challenge: Promoting Mathematical Modelling as Real-World Problem Solving. In International Perspectives on the Teaching and Learning of Mathematical Modelling. https://doi.org/10.1007/978-3-030-37673-4_22 DOI: https://doi.org/10.1007/978-3-030-37673-4_22
Göhner, M. F., Bielik, T., & Krell, M. (2022). Investigating the dimensions of modeling competence among preservice science teachers: Meta-modeling knowledge, modeling practice, and modeling product. Journal of Research in Science Teaching, 59(8), 1354–1387. https://doi.org/10.1002/tea.21759 DOI: https://doi.org/10.1002/tea.21759
Goos, M., Carreira, S., Immaculate, ·, & Namukasa, K. (2023). Mathematics and interdisciplinary STEM education: recent developments and future directions. ZDM – Mathematics Education, 55, 1199–1217. https://doi.org/10.1007/s11858-023-01533-z DOI: https://doi.org/10.1007/s11858-023-01533-z
Greefrath, G., & Vorhölter, K. (2016). Teaching and Learning Mathematical Modelling: Approaches and Developments from German Speaking Countries (open access). Springer Nature. http://www.springer.com/series/14352 DOI: https://doi.org/10.1007/978-3-319-45004-9_1
Hallström, J., Norström, P., & Schönborn, K. J. (2023). Authentic STEM education through modelling: an international Delphi study. International Journal of STEM Education, 10(1). https://doi.org/10.1186/s40594-023-00453-4 DOI: https://doi.org/10.1186/s40594-023-00453-4
Hallström, J., & Schönborn, K. J. (2019). Models and modelling for authentic STEM education: reinforcing the argument. International Journal of STEM Education, 6(1). https://doi.org/10.1186/s40594-019-0178-z DOI: https://doi.org/10.1186/s40594-019-0178-z
Han, S., Capraro, R., & Capraro, M. M. (2015). How science, technology, engineering, and mathematics (STEM) project-based learning (PBL) affects high, middle, and low achievers differently: The impact of student factors on achievement. International Journal of Science and Mathematics Education, 13(5), 1089–1113. https://doi.org/10.1007/s10763-014-9526-0 DOI: https://doi.org/10.1007/s10763-014-9526-0
STEM. Journal of Educational Psychology, 105(1), 89–107. https://doi.org/10.1037/a0029691 DOI: https://doi.org/10.1037/a0029691
Ikeda, T., & Stephens, M. (2020). Using a Mathematical Modelling Activity to Assist Students to Make Sense of a Limit Theorem in Trigonometry. In International Perspectives on the Teaching and Learning of Mathematical Modelling. https://doi.org/10.1007/978-3-030-37673-4_25 DOI: https://doi.org/10.1007/978-3-030-37673-4_25
Jamali, S. M., Ale Ebrahim, N., & Jamali, F. (2023). The role of STEM Education in improving the quality of education: a bibliometric study. International Journal of Technology and Design Education, 33(3), 819–840. https://doi.org/10.1007/s10798-022-09762-1 DOI: https://doi.org/10.1007/s10798-022-09762-1
Jan van Eck, N., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84, 523–538. https://doi.org/10.1007/s11192-009-0146-3 DOI: https://doi.org/10.1007/s11192-009-0146-3
Kaab, A., Sharifi, M., Mobli, H., Nabavi-Pelesaraei, A., & Chau, K.-W. (2019). Combined life cycle assessment and artificial intelligence for prediction of output energy and environmental impacts of sugarcane production. Science of the Total Environment, 664, 1005–1019. https://doi.org/10.1016/j.scitotenv.2019.02.004 DOI: https://doi.org/10.1016/j.scitotenv.2019.02.004
Kertil, M., & Gurel, C. (2016). Mathematical Modelling: A Bridge to STEM Education. International Journal of Education in Mathematics, Science and Technology, 4(1), 44. https://doi.org/10.18404/ijemst.95761 DOI: https://doi.org/10.18404/ijemst.95761
Kim, E., Mallat, E., & Joutsenlahti, J. (2023). A systematic review of primary school class teachers views of mathematics teaching and learning. LUMAT, 11(2), 60–87. https://doi.org/10.31129/LUMAT.11.2.2055 DOI: https://doi.org/10.31129/LUMAT.11.2.2055
Küçükaydın, M. A., & Ulum, H. (2025). The mediating role of creative problem solving between design thinking and self-efficacy in STEM teaching for STEM teacher candidates. International Journal of Technology and Design Education, 35(2), 629–645. https://doi.org/10.1007/s10798-024-09923-4 DOI: https://doi.org/10.1007/s10798-024-09923-4
Lämsä, J., Virtanen, A., Tynjälä, P., Maunuksela, J., & Koskinen, P. (2023). Exploring students’ perceptions of self-assessment in the context of problem solving in STEM. LUMAT, 11(2), 35–59. https://doi.org/10.31129/LUMAT.11.2.2028 DOI: https://doi.org/10.31129/LUMAT.11.2.2028
Lantau, J. M., Bracke, M., Bock, W., & Capraro, P. (2020). The Design of a Successful Teacher Training to Promote Interdisciplinary STEM Modelling Projects. In International Perspectives on the Teaching and Learning of Mathematical Modelling (pp. 455–465). Springer Science and Business Media B.V. https://doi.org/10.1007/978-3-030-37673-4_39 DOI: https://doi.org/10.1007/978-3-030-37673-4_39
Ledezma, C., Font, V., & Sala, G. (2023). Analysing the mathematical activity in a modelling process from the cognitive and onto-semiotic perspectives. Mathematics Education Research Journal, 35(4), 715–741. https://doi.org/10.1007/s13394-022-00411-3 DOI: https://doi.org/10.1007/s13394-022-00411-3
Lim, Y. W., Darmesah, G., Pang, N. T. P., & Ho, C. M. (2023). A bibliometric analysis of the structural equation modelling in mathematics education. In Eurasia Journal of Mathematics, Science and Technology Education (Vol. 19, Issue 12). Modestum LTD. https://doi.org/10.29333/ejmste/13838 DOI: https://doi.org/10.29333/ejmste/13838
Lubinski, D. (2010). Spatial ability and STEM: A sleeping giant for talent identification and development. Personality and Individual Differences, 49(4), 344–351. https://doi.org/10.1016/j.paid.2010.03.022 DOI: https://doi.org/10.1016/j.paid.2010.03.022
Lu, X., & Kaiser, G. (2022). Creativity in students’ modelling competencies: conceptualisation and measurement. Educational Studies in Mathematics, 109, 287–311. https://doi.org/10.1007/s10649-021-10055-y DOI: https://doi.org/10.1007/s10649-021-10055-y
Mayo-Wilson, E., Li, T., Fusco, N., & Dickersin, K. (2018). Practical guidance for using multiple data sources in systematic reviews and meta-analyses (with examples from the MUDS study). Research Synthesis Methods, 9(1), 2–12. https://doi.org/10.1002/jrsm.1277 DOI: https://doi.org/10.1002/jrsm.1277
Meles, C., & Ali, S. R. (2024). Mathematics education values applied among primary school students. International Journal of Modern Education, 6(21), 93–111. https://doi.org/10.35631/ijmoe.621008 DOI: https://doi.org/10.35631/IJMOE.621008
Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Journal of Clinical Epidemiology, 62(10), 1006–1012. https://doi.org/10.1016/j.jclinepi.2009.06.005 DOI: https://doi.org/10.1016/j.jclinepi.2009.06.005
Ngu, P. N. H., Nam, N. D., Cuong, L. M., & Thao, T. T. P. (2025). Mathematical modelling in higher education: Evolving research and emerging trends (1980–2023). Infinity Journal, 14(2), 393–418. https://doi.org/10.22460/infinity.v14i2.p393-418 DOI: https://doi.org/10.22460/infinity.v14i2.p393-418
Nuar, A. N. A., & Seah, C. Sen. (2024). Examining the Trend of Research on Big Data Architecture: Bibliometric Analysis using Scopus Database. Procedia Computer Science, 234, 172–179. https://doi.org/10.1016/j.procs.2024.04.010 DOI: https://doi.org/10.1016/j.procs.2024.04.010
Nyirahabimana, P., Minani, E., Nduwingoma, M., & Kemeza, I. (2022). A scientometric review of multimedia in teaching and learning of physics. LUMAT, 10(1), 89–106. https://doi.org/10.31129/LUMAT.10.1.1634 DOI: https://doi.org/10.31129/LUMAT.10.1.1634
Öztürk, O., Kocaman, R., & Kanbach, D. K. (2024). How to design bibliometric research: an overview and a framework proposal. Review of Managerial Science. https://doi.org/10.1007/s11846-024-00738-0 DOI: https://doi.org/10.1007/s11846-024-00738-0
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. In BMJ (Vol. 372). BMJ Publishing Group. https://doi.org/10.1136/bmj.n71 DOI: https://doi.org/10.1136/bmj.n71
Pathoumma, T., & Trinh, D. T. (2024). Fostering Critical and Creative Thinking through Mathematics Instruction in High Schools in the Lao People’s Democratic Republic. Pakistan Journal of Life and Social Sciences (PJLSS), 22(2). https://doi.org/10.57239/PJLSS-2024-22.2.000155 DOI: https://doi.org/10.57239/PJLSS-2024-22.2.000155
Peng, Y. (2023). A Comparative Study of Mathematical Modeling of Senior Middle School in China, German and the United States. In Proceedings of the 2nd International Conference on Education: Current Issues and Digital Technologies (ICECIDT 2022) (pp. 415–428). Atlantis Press SARL. https://doi.org/10.2991/978-2-494069-02-2_46 DOI: https://doi.org/10.2991/978-2-494069-02-2_46
Rehman, N., Zhang, W., Mahmood, A., Fareed, M. Z., & Batool, S. (2023). Fostering twenty-first century skills among primary school students through math project-based learning. Humanities and Social Sciences Communications, 10(1). https://doi.org/10.1057/s41599-023-01914-5 DOI: https://doi.org/10.1057/s41599-023-01914-5
Roehrig, G. H., Dare, E. A., Ellis, J. A., & Ring-Whalen, E. (2021). Beyond the basics: a detailed conceptual framework of integrated STEM. Disciplinary and Interdisciplinary Science Education Research, 3(1). https://doi.org/10.1186/s43031-021-00041-y DOI: https://doi.org/10.1186/s43031-021-00041-y
Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating computational thinking with K-12 science education using agent-based computation: A theoretical framework. Education and Information Technologies, 18(2), 351–380. https://doi.org/10.1007/s10639-012-9240-x DOI: https://doi.org/10.1007/s10639-012-9240-x
Spooner, K. (2022). What does mathematical modelling have to offer mathematics education? Insights from students’ perspectives on mathematical modelling. Article in International Journal of Mathematical Education in Science & Technology ·. https://doi.org/10.1080/0020739X.2021.2009052 DOI: https://doi.org/10.1080/0020739X.2021.2009052
Stovold, E., Beecher, D., Foxlee, R., & Noel-Storr, A. (2014). Study flow diagrams in Cochrane systematic review updates: an adapted PRISMA flow diagram. Systematic Reviews. http://www.systematicreviewsjournal.com/content/3/1/54 DOI: https://doi.org/10.1186/2046-4053-3-54
Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039 DOI: https://doi.org/10.1016/j.jbusres.2019.07.039
Tuong, H. A., Nam, P. S., Hau, N. H., Tien, V. T. B., Lavicza, Z., & Hougton, T. (2023). Utilising STEM-Based Practices to Enhance Mathematics Teaching in Vietnam: Developing Students’ Real-World Problem Solving and 21st Century Skills. Journal of Technology and Science Education, 13(1), 73–91. https://doi.org/10.3926/jotse.1790 DOI: https://doi.org/10.3926/jotse.1790
Uyen, B. P., Tong, D. H., Loc, N. P., & Thanh, L. N. P. (2021). The effectiveness of applying realistic mathematics education approach in teaching statistics in grade 7 to students’ mathematical skills. In Journal of Education and e-Learning Research (Vol. 8, Issue 2, pp. 185–197). Asian Online Journal Publishing Group. https://doi.org/10.20448/JOURNAL.509.2021.82.185.197 DOI: https://doi.org/10.20448/journal.509.2021.82.185.197
Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining Computational Thinking for Mathematics and Science Classrooms. Journal of Science Education and Technology, 25(1), 127–147. https://doi.org/10.1007/s10956-015-9581-5 DOI: https://doi.org/10.1007/s10956-015-9581-5
Zbiek, R. M., Peters, S. A., Galluzzo, B., & White, S. J. (2022). Secondary mathematics teachers learning to do and teach mathematical modelling: a trajectory. Journal of Mathematics Teacher Education. https://doi.org/10.1007/s10857-022-09550-7 DOI: https://doi.org/10.1007/s10857-022-09550-7
Downloads
Additional Files
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Aslipah Tasarib, Roslinda Rosli, Azmin Sham Rambely

This work is licensed under a Creative Commons Attribution 4.0 International License.