Examining STEM attitudes for Chinese senior pupils in primary school
DOI:
https://doi.org/10.31129/LUMAT.12.4.2409Keywords:
STEM atitudes, senior pupils, primary school, ChinaAbstract
This study aimed to determine pupils’ attitudes about STEM (science, technology, engineering, and mathematics) in China. A survey questionnaire was used to collect data from senior primary school pupils for a quantitative research study into their attitudes towards STEM. The survey collated attitudes towards three STEM subject subdimensions (i.e. mathematics attitude, science attitude, engineering and technology attitude) and STEM career interest using 42 items. Online data were collected from 864 senior primary school pupils (664 fifth graders, and 200 sixth graders). The data analysis included descriptive analysis and correlation analysis, specifically Pearson’s and Spearman’s rank correlations. The descriptive analysis showed that the STEM attitudes of Chinese senior primary school pupils were at a moderate level. The correlation analyses showed significant relationships between STEM attitudes and gender, grade, STEM experience or a lack of STEM experience, and parents’ educational background.
References
Ainley, M., & Ainley, J. (2011). Student engagement with science in early adolescence: The contribution of enjoyment to students’ continuing interest in learning about science. Contemporary Educational Psychology, 36(1), 4–12. https://doi.org/10.1016/j.cedpsych.2010.08.001 DOI: https://doi.org/10.1016/j.cedpsych.2010.08.001
Ayalon, H. (1995). Math as a gatekeeper: Ethnic and gender inequality in course taking of the sciences in Israel. American Journal of Education, 104(1), 34–56. https://doi.org/10.1086/444115 DOI: https://doi.org/10.1086/444115
Ball, C., Huang, K.-T., Cotten, S. R., & Rikard, R. V. (2017). Pressurizing the STEM pipeline: An expectancy-value theory analysis of youths’ STEM attitudes. Journal of Science Education and Technology, 26, 372–382. https://doi.org/10.1007/s10956-017-9685-1 DOI: https://doi.org/10.1007/s10956-017-9685-1
Batdı, V., Talan, T., & Semerci, Ç. (2019). Meta-analytic and meta-thematic analysis of STEM education. Turkish Online Journal of Educational Technology-TOJET, 7(4), 382–399. https://ijemst.net/index.php/ijemst/article/view/803
Blažev, M., Jagušt, T., Pale, P., Petrović, J., & Burušić, J. (2019). Qualitative analysis of experience, beliefs, and attitudes of primary school children towards a STEM intervention programme: How to understand outcome and plan future STEM intervention. Napredak: Časopis Za Interdisciplinarna Istraživanja u Odgoju i Obrazovanju, 160(1–2), 125–148. https://hrcak.srce.hr/file/327199
Chang, S.-H., Yang, L.-J., Chen, C.-H., Shih, C.-C., Shu, Y., & Chen, Y.-T. (2024). STEM education in academic achievement: A meta-analysis of its moderating effects. Interactive Learning Environments, 32(6), 2401–2423. https://doi.org/10.1080/10494820.2022.2147956 DOI: https://doi.org/10.1080/10494820.2022.2147956
Cheryan, S., Ziegler, S. A., Montoya, A. K., & Jiang, L. (2017). Why are some STEM fields more gender balanced than others? Psychological Bulletin, 143(1), 1–15. https://doi.org/10.1037/bul0000052 DOI: https://doi.org/10.1037/bul0000052
Ching, Y.-H., Yang, D., Wang, S., Baek, Y., Swanson, S., & Chittoori, B. (2019). Elementary school student development of STEM attitudes and perceived learning in a STEM integrated robotics curriculum. TechTrends, 63(5), 590–601. https://doi.org/10.1007/s11528-019-00388-0 DOI: https://doi.org/10.1007/s11528-019-00388-0
Divayana, D. G. H., Adiarta, A., & Sudirtha, I. G. (2019). The content validity of digital test items for evaluation courses based on Superitem-Wondershare using Aiken’s calculation. Journal of Physics: Conference Series, 1417(1), Article 012040. https://doi.org/10.1088/1742-6596/1417/1/012040 DOI: https://doi.org/10.1088/1742-6596/1417/1/012040
Eccles, J. S., & Wigfield, A. (2002). Motivational beliefs, values, and goals. Annual Review of Psychology, 53, 109–132. https://doi.org/10.1146/annurev.psych.53.100901.135153 DOI: https://doi.org/10.1146/annurev.psych.53.100901.135153
Erkut, S., & Marx, F. (2005). 4 schools for WIE. Evaluation report. Wellesley Centers for Women. https://files.eric.ed.gov/fulltext/ED500754.pdf
Faber, M., Unfried, A., Wiebe, E., Corn, J., Townsend, L., & Collins, T. (2013). Student attitudes toward STEM: The development of upper elementary school and middle/high school student surveys. 2013 ASEE Annual Conference & Exposition Proceedings, Atlanta, Georgia, 23.1094.1-23.1094.26. https://doi.org/10.18260/1-2--22479 DOI: https://doi.org/10.18260/1-2--22479
Gliem, J. A., & Gliem, R. R. (2003). Calculating, interpreting, and reporting Cronbach’s alpha reliability coefficient for Likert-type scales. The Midwest Research-to-Practice Conference in Adult, Continuing, and Community Education, Columbus, OH, 1, 82–87. https://hdl.handle.net/1805/344
Guzey, S. S., Harwell, M., & Moore, T. (2014). Development of an instrument to assess attitudes toward science, technology, engineering, and mathematics (STEM): Attitudes toward STEM. School Science and Mathematics, 114(6), 271–279. https://doi.org/10.1111/ssm.12077 DOI: https://doi.org/10.1111/ssm.12077
Herranen, J., Fooladi, E. C., & Milner-Bolotin, M. (2021). Editorial: Special issue “Promoting STEAM in education”. LUMAT: International Journal on Math, Science and Technology Education, 9(2), 1–8. https://doi.org/10.31129/LUMAT.9.2.1559 DOI: https://doi.org/10.31129/LUMAT.9.2.1559
Hofer, B. (2021). Exploring learner attitudes in multilingual contexts: An empirical investigation at the primary school level. In Pinto J. and Alexandre N. (Ed.), Multilingualism and third language acquisition (Vol. 2, pp. 139–163). Zenodo. https://doi.org/10.5281/ZENODO.4449726
Irwanto, I., Cahyana, U., & Ayuni, N. (2024). Examining the e-learning attitudes of Indonesian students during the COVID-19 pandemic. Journal of Education and E-Learning Research, 11(1), 36–45. https://doi.org/10.20448/jeelr.v11i1.5290 DOI: https://doi.org/10.20448/jeelr.v11i1.5290
Jain, V. (2014). 3D model of attitude. International Journal of Advanced Research in Management and Social Sciences, 3(3), 1–12. https://www.indianjournals.com/ijor.aspx?target=ijor:ijarmss&volume=3&issue=3&article=001&type=pdf
Krapp, A., & Prenzel, M. (2011). Research on interest in science: Theories, methods, and findings. International Journal of Science Education, 33(1), 27–50. https://doi.org/10.1080/09500693.2010.518645 DOI: https://doi.org/10.1080/09500693.2010.518645
Krejcie, R. V., & Morgan, D. W. (1970). Determining sample size for research activities. Educational and Psychological Measurement, 30, 607–610. https://doi.org/10.1177/001316447003000308 DOI: https://doi.org/10.1177/001316447003000308
Kurniawan, D. A., Astalini, A., Darmaji, D., & Melsayanti, R. (2019). Students’ attitude towards natural sciences. International Journal of Evaluation and Research in Education (IJERE), 8(3), 455–460. https://doi.org/10.11591/ijere.v8i3.16395 DOI: https://doi.org/10.11591/ijere.v8i3.16395
Kurz, M. E., Yoder, S. E., & Zu, L. (2015). Effects of exposure on attitudes towards stem interests. Education, 136(2), 229–241. https://go.gale.com/ps/i.do?id=GALE%7CA438207071&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=00131172&p=AONE&sw=w&userGroupName=anon%7Ebe0a9efd&aty=open-web-entry
Laine, E., Veermans, M., Gegenfurtner, A., & Veermans, K. (2020). Individual interest and learning in secondary school STEM education. Frontline Learning Research, 8(2), 90–108. https://doi.org/10.14786/flr.v8i2.461 DOI: https://doi.org/10.14786/flr.v8i2.461
Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D., & Duschl, R. A. (2019). Design and design thinking in STEM education. Journal for STEM Education Research, 2, 93–104. https://doi.org/10.1007/s41979-019-00020-z DOI: https://doi.org/10.1007/s41979-019-00020-z
Lundell, J., Borde, B., Filtzinger, B., Hansen, H., Henke, N., Oberthür, J., O’Donnell, C., Pahnke, J., Pasquinelli, E., Sadadou, D., & Vogel, A.-C. (2023). How can networks help encourage the development and professionalisation of innovative early STEM education in a changing world? LUMAT-B, 8(1), 60–95. https://urn.fi/urn:nbn:fi:hulib:editori:lumatb.v8i1.1988
Lynn, M. R. (1986). Determination and quantification of content validity. Nursing Research, 35(6), 382–386. https://journals.lww.com/nursingresearchonline/citation/1986/11000/determination_and_quantification_of_content.17.aspx. DOI: https://doi.org/10.1097/00006199-198611000-00017
Lyons, T. (2006). Different countries, same science classes: Students’ experiences of school science in their own words. International Journal of Science Education, 28(6), 591–613. https://doi.org/10.1080/09500690500339621 DOI: https://doi.org/10.1080/09500690500339621
Maltese, A. V., & Tai, R. H. (2011). Pipeline persistence: Examining the association of educational experiences with earned degrees in STEM among U.S. students. Science Education, 95(5), 877–907. https://doi.org/10.1002/sce.20441 DOI: https://doi.org/10.1002/sce.20441
Master, A., & Meltzoff, A. N. (2016). Building bridges between psychological science and education: Cultural stereotypes, STEM, and equity. PROSPECTS, 46(2), 215–234. https://doi.org/10.1007/s11125-017-9391-z DOI: https://doi.org/10.1007/s11125-017-9391-z
Master, A., & Meltzoff, A. N. (2020). Cultural stereotypes and sense of belonging contribute to gender gaps in STEM. Science and Technology, 12(1), 152–198. http://genderandset.open.ac.uk/index.php/genderandset/article/view/674
Mazana, M. Y. (2018). Social media in the classroom: WhatsApp a new communication tool for enhanced class interactions. Business Education Journal, 2(1), 8 Pages. https://www.researchgate.net/publication/332379590_SOCIAL_MEDIA_IN_THE_CLASSROOM_WHATSAPP_A_NEW_COMMUNICATION_TOOL_FOR_ENHANCED_CLASS_INTERACTIONS
Ministry of Education of the People’s Republic of China. (2022). Science Curriculum Standard for Compulsory Education (No. JYCB001; Version 2022). Beijing Normal University Publishing Group.
Moè, A., Hausmann, M., & Hirnstein, M. (2021). Gender stereotypes and incremental beliefs in STEM and non-STEM students in three countries: Relationships with performance in cognitive tasks. Psychological Research, 85(2), 554–567. https://doi.org/10.1007/s00426-019-01285-0 DOI: https://doi.org/10.1007/s00426-019-01285-0
National Institute of Education Science. (2017). White paper on STEM education in China. https://wenku.baidu.com/view/f43a9834f68a6529647d27284b73f242326c3150?aggId=009e22f9bad528ea81c758f5f61fb7360a4c2b02&fr=catalogMain_text_ernie_recall_v1%3Awk_recommend_main3&_wkts_=1742127866565&bdQuery=%E4%B8%AD%E5%9B%BDSTEM%E6%95%99%E8%82%B2%E7%99%BD%E7%9A%AE%E4%B9%A6&needWelcomeRecommand=1
Noonan, R. (2017). STEM jobs: 2017 update. ESA issue brief# 02–17. US Department of Commerce. http://www.commerce.gov
Norman, G. (2010). Likert scales, levels of measurement and the “laws” of statistics. Advances in Health Sciences Education, 15, 625–632. https://doi.org/10.1007/s10459-010-9222-y DOI: https://doi.org/10.1007/s10459-010-9222-y
Nursetiawati, S., Josua, D. P., Atmanto, D., Oktaviani, F., & Fardani, A. L. (2020). Science education in the family environment with the experimental method of facial cosmetics plant fertilization in the Covid-19 pandemic era. Jurnal Pendidikan IPA Indonesia, 9(4), 561–573. https://doi.org/10.15294/jpii.v9i4.26563 DOI: https://doi.org/10.15294/jpii.v9i4.26563
Regan, E., & DeWitt, J. (2014). Attitudes, interest and factors influencing STEM enrolment behaviour: An overview of relevant literature. In E. K. Henriksen, J. Dillon, & J. Ryder (Eds.), Understanding Student Participation and Choice in Science and Technology Education (pp. 63–88). Springer Netherlands. https://doi.org/10.1007/978-94-007-7793-4_5 DOI: https://doi.org/10.1007/978-94-007-7793-4_5
Rezayat, F., & Sheu, M. (2020). Attitude and readiness for stem education and careers: A comparison between American and Chinese students. International Journal of Educational Management, 34(1), 111–126. https://doi.org/10.1108/IJEM-07-2018-0200 DOI: https://doi.org/10.1108/IJEM-07-2018-0200
Rifandi, R., & Rahmi, Y. L. (2019). STEM education to fulfil the 21st century demand: A literature review. Journal of Physics: Conference Series, 1317(1), Article 012208. https://doi.org/doi:10.1088/1742-6596/1317/1/012208 DOI: https://doi.org/10.1088/1742-6596/1317/1/012208
Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1), 54–67. https://doi.org/10.1006/ceps.1999.1020 DOI: https://doi.org/10.1006/ceps.1999.1020
Saraç, H. (2018). The effect of science, technology, engineering and mathematics-stem educational practices on students’ learning outcomes: A meta-analysis study. The Turkish Online Journal of Educational Technology, 17(2), 125–142. https://eric.ed.gov/?id=EJ1176176
Sarican, G., & Akgunduz, D. (2018). The impact of integrated STEM education on academic achievement, reflective thinking skills towards problem solving and permanence in learning in science education. Cypriot Journal of Educational Science, 13(1), 94–114. https://eric.ed.gov/?id=EJ1196043 DOI: https://doi.org/10.18844/cjes.v13i1.3372
Schneider, B., & Coleman, J. (2018). Parents, their children, and schools. Routledge. DOI: https://doi.org/10.4324/9780429498497-1
Simpkins, S. D., Davis-Kean, P. E., & Eccles, J. S. (2006). Math and science motivation: A longitudinal examination of the links between choices and beliefs. Developmental Psychology, 42(1), 70–83. https://doi.org/10.1037/0012-1649.42.1.70 DOI: https://doi.org/10.1037/0012-1649.42.1.70
Sjaastad, J. (2012). Sources of inspiration: The role of significant persons in young people’s choice of science in higher education. International Journal of Science Education, 34(10), 1615–1636. https://doi.org/10.1080/09500693.2011.590543 DOI: https://doi.org/10.1080/09500693.2011.590543
Sullivan, G. M., & Artino, A. R. (2013). Analyzing and interpreting data from Likert-type scales. Journal of Graduate Medical Education, 5(4), 541–542. https://doi.org/10.4300/JGME-5-4-18 DOI: https://doi.org/10.4300/JGME-5-4-18
Sun, L., Hu, L., Yang, W., Zhou, D., & Wang, X. (2021). STEM learning attitude predicts computational thinking skills among primary school students. Journal of Computer Assisted Learning, 37(2), 346–358. https://doi.org/10.1111/jcal.12493 DOI: https://doi.org/10.1111/jcal.12493
Supian, F. L., Tho, S. W., Wong, Y. Y., Mohd Azmi, M. S., Hosman, N. J., Ratnawulan, R., & Al Naim, A. F. (2023). The evaluation of a technology-embedded solar energy STEM (SESTEM) module: A pilot implementation of modern teaching tool for diploma science students. Jurnal Pendidikan IPA Indonesia, 12(4), 590–597. https://doi.org/10.15294/jpii.v12i4.43994 DOI: https://doi.org/10.15294/jpii.v12i4.43994
Syyeda, F. (2016). Understanding attitudes towards mathematics (ATM) using a multi- modal model: An exploratory case study with secondary school children in England. Cambridge Open-Review Educational Research e-Journal, 3. https://doi.org/DOI:10.17863/CAM.41157
Taha, H., & Subramaniam, T. (2020). A correlational study between parental awareness of STEM education and student’s enrolment for STEM-related subjects for upper secondary school level. Journal of Science and Mathematics Letters, 8(2), 8–14. https://doi.org/10.37134/jsml.vol8.2.2.2020 DOI: https://doi.org/10.37134/jsml.vol8.2.2.2020
Tai, R. H., Qi Liu, C., Maltese, A. V., & Fan, X. (2006). Planning early for careers in science. Science, 312(5777), 1143–1144. https://doi.org/10.1126/science.1128690 DOI: https://doi.org/10.1126/science.1128690
Uerz, D., Dekkers, H., & Béguin, A. A. (2004). Mathematics and language skills and the choice of science subjects in secondary education. Educational Research and Evaluation, 10(2), 163–182. https://doi.org/10.1076/edre.10.2.163.27908 DOI: https://doi.org/10.1076/edre.10.2.163.27908
Ugulu, I. (2020). Gifted students’ attitudes towards science. International Journal of Educational Sciences, 28(1–3), 7–14. https://doi.org/10.31901/24566322.2020/28.1-3.1088 DOI: https://doi.org/10.31901/24566322.2020/28.1-3.1088
Unfried, A., Faber, M., Stanhope, D. S., & Wiebe, E. (2015). The development and validation of a measure of student attitudes toward science, technology, engineering, and math (S-STEM). Journal of Psychoeducational Assessment, 33(7), 622–639. https://doi.org/10.1177/0734282915571160 DOI: https://doi.org/10.1177/0734282915571160
Wiebe, E., Unfried, A., & Faber, M. (2018). The relationship of STEM attitudes and career interest. EURASIA Journal of Mathematics, Science and Technology Education, 14(10). https://doi.org/10.29333/ejmste/92286 DOI: https://doi.org/10.29333/ejmste/92286
Wigfield, A., & Cambria, J. (2010). Expectancy-value theory: Retrospective and prospective. In Urdan, T.C. and Karabenick, S.A. (Ed.) The Decade Ahead: Theoretical Perspectives on Motivation and Achievement: Vol. 16 Part A (pp. 35–70). Emerald Group Publishing Limited. https://doi.org/10.1108/S0749-7423(2010)000016A005 DOI: https://doi.org/10.1108/S0749-7423(2010)000016A005
WISE. (2018). 2018 workforce statistics. WISE. https://www.wisecampaign.org.uk/2018-workforce-statistics/
Zhou, S.-N., Zeng, H., Xu, S.-R., Chen, L.-C., & Xiao, H. (2019). Exploring changes in primary students’ attitudes towards science, technology, engineering, and mathematics (STEM) across genders and grade levels. Journal of Baltic Science Education, 18(3), 466–480.https:/doi.org/10.33225/jbse/19.18.466 DOI: https://doi.org/10.33225/jbse/19.18.466

Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Yasong Yan, Nur Jahan Ahmad

This work is licensed under a Creative Commons Attribution 4.0 International License.