Teachers’ challenges in teaching integrated STEM

In the light of PCK as an analytical lens

Authors

DOI:

https://doi.org/10.31129/LUMAT.12.4.2402

Keywords:

iSTEM education, iSTEM challenges, interdisciplinarity, pedagogical content knowledge, professional development

Abstract

In this article, we examine the challenges that teachers perceive when developing, planning and implementing integrated science, technology, engineering and mathematics (iSTEM) activities through collegial collaboration in elementary and lower secondary schools in Denmark. The aim was for teachers to collaborate across disciplines and to develop and implement iSTEM teaching activities. Throughout this process, all the teachers reported their challenges through process papers and surveys, while selected teachers provided additional insights through interviews. A thematic analysis identified five themes concerning the challenges of teaching iSTEM: subject matter confidence and student-centred approaches; collegial collaboration; specific challenges in integrating subjects across disciplines; planning and implementation; and challenges related to students. When comparing the challenges identified in the literature to those emerging from our data, many similar issues were found, alongside new perspectives that raise questions about previous assumptions regarding the challenges and constraints of teaching iSTEM. Notably, the teachers’ feelings of competence, enacted Pedagogical Content Knowledge and personal Pedagogical Content Knowledge when teaching iSTEM appeared to be related more to the procedural and pedagogical processes involved in using student-centred approaches than to the subject-specific content of the disciplines being taught.

References

Alonzo, A. C., Berry, A., & Nilsson, P. (2019). Unpacking the complexity of science teachers’ PCK in action: Enacted and personal PCK. In A. Hume, R. Cooper & A. Borowski (Eds.), Repositioning pedagogical content knowledge in teachers’ knowledge for teaching science (pp. 271–286). Springer. https://doi.org/10.1007/978-981-13-5898-2_15

An, S. A. (2017). Preservice teachers’ knowledge of interdisciplinary pedagogy: The case of elementary mathematics-science integrated lessons, ZDM – Mathematic Education, 49(2), 237–248. http://doi.org/10.1007/s11858-016-0821-9

Appleton, K. (2003). How do beginning primary school teachers cope with science? Toward an understanding of science teaching practice. Journal for Research in Science Teaching, 33, 1–25. http://doi.org/10.1023/A:1023666618800

Auning, C., Ellebæk, J. J., Bennedsen, K., Larsen, D. M., & Svabo, C. (2023). LabSTEM- STEM i grundskolen: aktiviteter og idéer. Syddansk Universitet. Forskningscenter for Naturvidenskabelig Uddannelse og Formidling. https://www.sdu.dk/Flexpaper/aspnet/Flex_document.aspx?doc=/sitecore/media%20library/Files/epage/Forskning/labstem/stem_i_grundskolenpdf?sc_database=web

Aydin-Gunbatar, S., Ekiz-Kiran, B., & Oztay, E. S. (2020). Pre-service chemistry teachers’ pedagogical content knowledge for integrated STEM development with LESMeR model. Chemistry Education Research and Practice, 21(4), 1063–1082. https://doi.org/10.1039/D0RP00074D

Bjerke, A. H., & Solomon, Y. (2020). Developing self-efficacy in teaching mathematics: Pre-service teachers’ perceptions of the role of subject knowledge. Scandinavian Journal of Educational Research, 64(5), 692–705. https://doi.org/10.1080/00313831.2019.1595720

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. http://doi.org/10.1191/1478088706qp063oa

Bursal, M., & Paznokas, L. (2006). Mathematics anxiety and pre-service elementary teachers’ confidence to teach mathematics and science. School Science and Mathematics, 106(4), 173–179. http://doi.org/10.1111/j.1949-8594.2006.tb18073

Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. NSTA Press.

Børne og Undervisningsministeriet (2019). Fælles mål. https://www.uvm.dk/folkeskolen/fag-timetal-og-overgange/faelles-maal/om-faelles-maal

Carlson, J., & Daehler, K. R. (2019). The refined consensus model of pedagogical content knowledge in science education. In A. Hume, R. Cooper & A. Borowski (Eds.), Repositioning pedagogical content knowledge in teachers’ knowledge for teaching science (pp. 77–92). Springer. https://doi.org/10.1007/978-981-13-5898-2_15

Cohen, L. Manion, L., & Morrison, K.. (2011). Research methods in education. Routledge.

Ellebæk, J. J. (2021). Primary science teachers’ narratives about significant colleagues in light of collective PCK. International Journal of Science Education, 43(10), 1–18. http://doi.org/10.1080/09500693.2021.1927235

English, L. D. (2016). Advancing mathematics education research within a STEM environment. In K. Makar, S. Dole, J. Visnovska, M. Goos, A. Bennison & K. Fry (Eds.), Research in mathematics education in Australasia 2012–2015 (pp. 353–371). Springer. https://doi.org/10.1007/978-981-10-1419-2_17

Flyvbjerg, B. (2006). Five misunderstandings about case-study research. Qualitative Inquiry, 12(2), 219–245. https://doi.org/10.18261/ISSN1504-2928-2004-02-

Gess-Newsome, J. (2015). A model of teacher professional knowledge and skill including PCK. In A. Berry, P. Friedrichsen & J. Loughra (Eds.), Re-examining pedagogical content knowledge in science education (pp. 28–42). Routledge. http://doi.org/10.4324/9781315735665

Hall, G. E., & Hord, S. M. (2006). Implementing change: Patterns, principles and potholes. Pearson/Allyn and Bacon.

Hattie, J. (2013). Synlig læring-for lærere. Dafolo.

Jones, M. G., & Leagon, M. (2014). Science teacher attitudes and beliefs: Reforming practice. In S. Abell, K. Appleton & D. Hanuscin (Eds), Handbook of research on science education, Volume II (pp. 844–861). Routledge. https://doi.org/10.4324/9780203824696

Kelly, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(11). https://doi.org/10.1186/s40594-016-0046-z.

Kim, D., & Bolger, M. (2017). Analysis of Korean elementary pre-service teachers’ changing attitudes about integrated STEAM pedagogy through developing lesson plans. International Journal of Science and Mathematics Education, 15(4), 587–605. https://doi.org/10.1007/s10763-015-9709-3

Larsen, D. M., Kristensen, M. L., Hjort, M. F., & Seidelin, L. (2022). STEM-didaktik: Et internationalt, systemisk review om STEM-undervisningens didaktik. MONA - Matematik- og Naturfagsdidaktik, 22(1). https://tidsskrift.dk/mona/article/view/131923

Ling, L. S., Pang, V., & Lajium, D. (2020). A case study of teachers’ pedagogical content knowledge in the implementation of integrated STEM education. Jurnal Pendidikan Sains Dan Matematik Malaysia, 10(1), 49–64. https://doi.org/10.37134/jpsmm.vol10.1.6.2020

Loughran, J., Berry, A., & Mulhall, P. (2012). Understanding and developing science teachers’ pedagogical content knowledge. Sense Publishers.

Loughran, J., Mulhall, P., & Berry, A. (2004). In search of pedagogical content knowledge in science: Developing ways of articulating and documenting professional practice. Journal of Research in Science Teaching, 41(4), 370–391. http://doi.org/10.1002/tea.20007

Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources and development of pedagogical content knowledge for science teaching. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge (pp. 95–132). Springer. https://doi.org/10.1007/0-306-47217-1_4

McDonald, C. V. (2016). STEM Education: A review of the contribution of the disciplines of science, technology, engineering and mathematics. Science Education International, 27, 530–569.

Mientus, L., Hume, A., Wulff, P., Meiners, A., & Borowski, A. (2022). Modelling STEM teachers’ pedagogical content knowledge in the framework of the refined consensus model: A systematic literature review. Education Sciences, 12(6), 385. https://doi.org/10.3390/educsci12060385

Moore, T. J., & Smith, K. A. (2014). Advancing the state of the art of STEM integration. Journal of STEM Education: Innovations and Research, 15(1), 5–10.

Nadelson, L. S., Seifert, A., Moll, A. J., & Coats, B. (2012). i-STEM summer institute: An integrated approach to teacher professional development in STEM. Journal of STEM Education: Innovation and Outreach 13(2), 69–83.

Park, S., & Suh, J. K. (2019). The PCK map approach to capturing the complexity of enacted PCK (enacted PCK) and pedagogical reasoning in science teaching. In A. Hume, R. Cooper & A. Borowski (Eds.), Repositioning pedagogical content knowledge in teachers’ knowledge for teaching science (pp. 185–197). Springer. https://doi.org/10.1007/978-981-13-5898-2_15

Patton, M. Q. (1990). Qualitative evaluation and research methods (2nd ed.). Sage.

Shaughnessy, M. (2013). Mathematics in a STEM context. Mathematics Teaching in the Middle School, 18(6), 324. https://doi.org/10.5951/mathteacmiddscho.18.6.0324

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching, Educational Researcher, 5(2), 4–14.

Srikoom, W., Faikhamta, C., & Hanuscin, D. (2018). Dimensions of effective STEM integrated teaching practice. K-12 Stem Education, 4(2), 313–330.

Thibaut, L., Knipprath, H., Dehaene, W., & Depaepe, F. (2018). The influence of teachers’ attitudes and school context on instructional practices in integrated STEMeducation. Teaching and Teacher Education, 71, 190–205. https://doi.org/10.1016/j.tate.2017.12.014

Uddannelses- og Forskningsministeriet (2020). Bekendtgørelse om uddannelsen til professionsbachelor som lærer i folkeskolen. https://www.retsinformation.dk/eli/lta/2020/1140

Uzzo, S. M., Graves, S. B., Shay, E., Harford, M., & Thompson, R. (2018). Pedagogical Content Knowledge in STEM: Research to Practice (1st ed. 2018.). Springer International Publishing AG. https://doi.org/10.1007/978-3-319-97475-0

Van Driel, J. H., Berry, A., & Meirink, J. (2014). Research on science teacher knowledge. In N. Lederman & S. Abell (Eds.), Handbook of research on science education 2 (pp. 862–884). Routledge. http://doi.org/10.4324/9780203097267

Venville, G. J., Wallace, J., Rennie, L. J., & Malone, J. A. (2002). Curriculum integration: Eroding the high ground of science as a school subject?. Studies in Science Education, 37(1), 43–83. https://doi.org/10.1080/03057260208560177

Wong, V., & Dillon, J. (2019). ‘Voodoo maths’, asymmetric dependency and maths blame: Why collaboration between school science and mathematics teachers is so rare. International Journal of Science Education, 41(6), 782–802. https://doi.org/10.1080/09500693.2019.1579945

Cover image of the article.

Downloads

Published

2025-04-10

How to Cite

Ellebæk, J. J., Dorte Moeskær Larsen, & Claus Auning. (2025). Teachers’ challenges in teaching integrated STEM: In the light of PCK as an analytical lens. LUMAT: International Journal on Math, Science and Technology Education, 12(4), 13. https://doi.org/10.31129/LUMAT.12.4.2402