Student teachers’ common content knowledge for solving routine fraction tasks
DOI:
https://doi.org/10.31129/LUMAT.10.2.1656Keywords:
common content knowledge, elementary school, fractions, student teacher, teacher educationAbstract
This study focuses on the knowledge base that Swedish elementary student teachers demonstrate in their solutions for six routine fraction tasks. The paper investigates the student teachers’ common content knowledge of fractions and discusses the implications of the findings. Fraction knowledge that student teachers bring to teacher education has been rarely investigated in the Swedish context. Thus, this study broadens the international view in the field and gives an opportunity to see some worldwide similarities as well as national challenges in student teachers’ fraction knowledge. The findings in this study reveal uncertainty and wide differences between the student teachers when solving fraction tasks that they were already familiar with; two of the 59 participants solved correctly all tasks, whereas some of them gave only one or not any correct answer. Moreover, the data indicate general limitations in the participants’ basic knowledge in mathematics. For example, many of them make errors in using mathematical symbol writing and different representation forms, and they do not recognize unreasonable answers and incorrect statements. Some participants also seemed to guess at an algorithm to use when they did not remember or understand the correct solution method.
References
Ball, D. L. (1990). The mathematical understandings that prospective teachers bring to teacher education. The Elementary School Journal, 90(4), 449–466. https://doi.org/10.1086/461626
Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389–407.
Borko, H., Eisenhart, M., Brown, C. A., Underhill, R. G., Jones, D., & Agard, P. C. (1992). Learning to teach hard mathematics: Do novice teachers and their instructors give up too easily? Journal for Research in Mathematics Education, 23(3), 194–222. https://doi.org/10.2307/749118
Charalambous, C. Y., Hill, H. C., Chin, M. J., & McGinn, D. (2020). Mathematical content knowledge and knowledge for teaching: exploring their distinguishability and contribution to student learning. Journal of Mathematics Teacher Education, 23(6), 579–613. https://doi.org/10.1007/s10857-019-09443-2
Charalambous, C. Y., & Pitta-Pantazi, D. (2007). Drawing on a theoretical model to study students’ understanding of fractions. Educational Studies in Mathematics, 64(3), 293–316. https://doi.org/10.1007/s10649-006-9036-2
Cramer, K. A., Post, T. R., & delMas, R. C. (2002). Initial fraction learning by fourth- and fifth-grade students: A comparison of the effects of using commercial curricula with the effects of using the Rational Number Project curriculum. Journal for Research in Mathematics Education, 33(2), 111–144. https://doi.org/10.2307/749646
Ernest, P. (1989). The knowledge, beliefs and attitudes of the mathematics teacher: a model. Journal of Education for Teaching, 15(1), 13–33. https://doi.org/10.1080/0260747890150102
Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. In J. Hiebert (Ed). Conceptual and procedural knowledge: The case of mathematics (pp. 1–27). Lawrence Erlbaum.
Hoover, M., Mosvold, R., Ball, D. L., & Lai, Y. (2016). Making progress on mathematical knowledge for teaching. The Mathematics Enthusiast, 13(1 & 2), 3–34. https://doi.org/10.54870/1551-3440.1363
Häkkinen, K., Tossavainen, T., & Tossavainen, A. (2011). Kokemuksia luokanopettajaksi pyrkivien matematiikan soveltuvuustestistä Savonlinnan opettajankoulutuslaitoksessa. In E. Pehkonen (Ed.), Luokanopettajaopiskelijoiden matematiikkataidoista, Tutkimuksia 328 (pp. 47–64). Department of Applied Educational Science, University of Helsinki.
Jakobsen, A., Ribeiro, C. M., & Mellone, M. (2014). Norwegian prospective teachers' MKT when interpreting pupils' productions on a fraction task. Nordic Studies in Mathematics Education, 19(3-4), 135–150.
Jóhannsdóttir, B., & Gísladóttir, B. (2014). Exploring the mathematical knowledge of prospective elementary teachers in Iceland using the MKT measures. Nordic Studies in Mathematics Education, 19(3-4), 21–40.
Kieren, T. E. (1993). Rational and fractional numbers: From quotient fields to recursive understanding. In T. P. Carpenter, E. Fennema, & T. A. Romberg (Eds.), Rational numbers: An integration of research (pp. 49-84). Lawrence Erlbaum Associates.
Lamon, S. J. (2007). Rational numbers and proportional reasoning: Toward a theoretical framework for research. In F. K. Lester, Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 629-667). Information Age.
Lamon, S. J. (2020). Teaching fractions and ratios for understanding: Essential content knowledge and instructional strategies for teachers (Fourth Ed.). Routledge.
Lin, C.-Y., Becker, J., Byun, M.-R., Yang, D.-C., & Huang, T.-W. (2013). Preservice teachers’ conceptual and procedural knowledge of fraction operations: A comparative study of the United States and Taiwan. School Science and Mathematics, 113(1), 41–51. https://doi.org/10.1111/j.1949-8594.2012.00173.x
Löwing, M. (2016). Diamant – diagnoser i matematik: Ett kartläggningsmaterial baserat på didaktisk ämnesanalys [Doctoral dissertation, University of Gothenburg]. http://hdl.handle.net/2077/47607
Ma, L. (2010). Knowing and teaching elementary mathematics: Teachers’ understanding of fundamental mathematics in China and the United States. Anniversary Edition. Routledge.
Maciejewski, W., & Star, J. R. (2016). Developing flexible procedural knowledge in undergraduate calculus. Research in Mathematics Education, 18(3), 299–316. https://doi.org/10.1080/14794802.2016.1148626
Marchionda, H. (2006). Preservice teachers’ procedural and conceptual understanding of fractions and the effects of inquiry-based learning on this understanding [Doctoral dissertation, Clemson University]. https://tigerprints.clemson.edu/all_dissertations/37
Moss, J., & Case, R. (1999). Developing children’s understanding of the rational numbers: A new model and an experimental curriculum. Journal for Research in Mathematics Education, 30(2), 122–147. https://doi.org/10.2307/749607
Muir, T., & Livy, S. (2012). What do they know? A comparison of pre-service teachers’ and in-service teachers’ decimal mathematical content knowledge. International Journal for Mathematics Teaching and Learning, 2012, December 5th, 1–15. Retrieved from http://www.cimt.org.uk/journal/muir2.pdf
Newton, K. J. (2008). An extensive analysis of preservice elementary teachers’ knowledge of fractions. American Educational Research Journal, 45(4), 1080–1110. https://doi.org/10.3102/0002831208320851
Olanoff, D., Lo, J.-J., & Tobias, J. (2014). Mathematical content knowledge for teaching elementary mathematics: A focus on fractions. The Mathematics Enthusiast, 11(2), 267–310. https://doi.org/10.54870/1551-3440.1304
Radatz, H. (1979). Error analysis in mathematics education. Journal for Research in Mathematics Education, 10(3), 163–172. https://doi.org/10.2307/748804
Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.
Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., Duckworth, K., Claessens, A., Engel, M., Susperreguy, M. I., & Chen, M. (2012). Early predictors of high school mathematics achievement. Psychological Science, 23(7), 691–697. https://doi.org/10.1177/0956797612440101
Skolverket [Swedish National Agency for Education]. (2011). Curriculum for the compulsory school, preschool class and school-age educare. Revised 2018. Skolverket.
Skolverket [Swedish National Agency for Education]. (2016). TIMSS 2015. Svenska grundskoleelevers kunskaper i matematik och naturvetenskap i ett internationellt perspektiv. Internationella studier 448. Skolverket.
Skolverket [Swedish National Agency for Education]. (2019). PISA 2018. 15-åringars kunskaper i läsförståelse, matematik och naturvetenskap. Internationella studier 487. Skolverket.
Tirosh, D. (2000). Enhancing prospective teachers’ knowledge of children’s conceptions: The case of division of fractions. Journal for Research in Mathematics Education, 31(1), 5–25. https://doi.org/10.2307/749817
Tirosh, D., Fischbein, E., Graeber A. O., & Wilson, J. W. (1998). Prospective elementary teachers’ conceptions of rational numbers. Retrieved from http://jwilson.coe.uga.edu/Texts.Folder/Tirosh/Pros.El.Tchrs.html
Toluk-Uçar, Z. (2009). Developing pre-service teachers understanding of fractions through problem posing. Teaching and Teacher Education, 25(1), 166–175. https://doi.org/10.1016/j.tate.2008.08.003
Van Steenbrugge, H., Lesage, E., Valcke, M., & Desoete, A. (2014). Preservice elementary school teachers’ knowledge of fractions: a mirror of students’ knowledge? Journal of Curriculum Studies, 46(1), 138–161. https://doi.org/10.1080/00220272.2013.839003
Zhou, Z., Peverly, S.T., & Xin, T. (2006). Knowing and teaching fractions: A cross-cultural study of American and Chinese mathematics teachers. Contemporary Educational Psychology, 31, 438–457. https://doi.org/10.1016/j.cedpsych.2006.02.001
Young, E., & Zientek, L. R. (2011). Fraction operations: An examination of prospective teachers’ errors, confidence, and bias. Investigations in Mathematics Learning, 4(1), 1–23. https://doi.org/10.1080/24727466.2011.11790307
Downloads
Additional Files
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Anne Tossavainen
This work is licensed under a Creative Commons Attribution 4.0 International License.