Lärarens stöttning av elevers gruppdiskussioner i kemiundervisningen i årskurs 8
DOI:
https://doi.org/10.31129/LUMAT.14.2.2973Keywords:
kemiundervisning, tankeblad, smågruppsdiskussioner, stöttning, diagnostiska strategier, chemistry education, thinking sheet, small group discussions, scaffolding, diagnostic strategiesAbstract
I denna fallstudie fokuserar vi på en lärares stöttning av smågruppsdiskussioner i kemi i årskurs 8. Syftet med diskussionerna var att skapa undervisningssituationer där eleverna skulle ”tala kemi” och därmed få utveckla sin förståelse genom att använda det naturvetenskapliga språket. Som stöd för elevernas diskussioner skapade läraren tankeblad som är ett gemensamt arbetsblad med frågor, bilder, modeller, tabeller eller begreppsbubblor. Teman för elevernas diskussioner var kemiska reaktioner, kolets kretslopp och fossila bränslen. I denna artikel fokuserar vi på lärarens stöttning, både den planerade stöttningen i form av tankeblad och stöttningsprocessen i klassrummet. Denna artikel bygger på data från videoinspelningar av några gruppers diskussioner samt på deras ifyllda tankeblad. Lärarens stöttning analyserades med hjälp av en modell som omfattar både diagnostiska strategier och interventionsstrategier. Studiens resultat visar hur tankebladets frågor gav struktur åt elevernas diskussioner och fungerade som ett verktyg för läraren att följa med elevernas arbete. Resultaten visar också hur tankebladen fungerade för att diagnostisera elevernas förförståelse bland annat med hjälp av en begreppsbubbla och med bilder där både den makroskopiska och submikroskopiska nivån synliggjorts. Läraren använde flexibelt olika interventionsstrategier för att stötta elevernas diskussioner. Elevernas frågor till läraren visar att kombinationen mellan planerat material och lärarens muntliga stöttning är viktig. En utmaning med tankeblad är att hitta frågeställningar som skapar diskussion och att ställa frågor på en lämplig nivå.
A teacher’s scaffolding of group discussions in 8th grade chemistry education
Abstract: In this case study we focus on a teacher’s scaffolding of small group discussions in 8th grade in chemistry education. The purpose of these discussions was to create opportunities for students to ‘talk chemistry’ and thereby develop their understanding through the use of scientific language. As scaffolds to support the students’ discussions, the teacher designed thinking sheets, which are shared worksheets containing questions, images, models, tables or concept cartoons. The themes for discussions were chemical reactions, the carbon cycle and fossil fuels. In this article we focus on the teacher’s scaffolding, both the planned scaffolding through thinking sheets and the real-time scaffolding during classroom interaction. The data consists of video recordings of selected group discussions together with the completed thinking sheets. The teacher’s scaffolding was analyzed using a model that includes both diagnostic strategies and intervention strategies. The findings show that the questions on the thinking sheet structured students’ discussions and provided the teacher with a tool for monitoring their work. The findings also show how the thinking sheet functioned to diagnose the students’ preconceptions, for instance through the use of a concept cartoon and images making both the macroscopic and submicroscopic levels visible. To scaffold the discussions, the teacher drew flexibly on a variety of intervention strategies in order to promote the students’ discussions. The students’ questions to the teacher illustrate the significance of combining planned materials with the teacher’s verbal scaffolding. A continuing challenge with thinking sheets lies in formulating prompts that genuinely stimulate discussion and are pitched at a suitable level.
References
Ahtee, M., & Varjola, I. (1998). Students’ understanding of chemical reaction. International Journal of Science Education, 20(3), 305‒316. https://doi.org/10.1080/0950069980200304 DOI: https://doi.org/10.1080/0950069980200304
Andersson B., Bach, F., Frändberg, B., Jansson, I., Kärrqvist, C., Nyberg, E., Wallin, A., & Zetterqvist, A. (2003). Att förstå naturen – från vardagsbegrepp till kemi, sex ”workshops”. Ämnesdidaktik i praktiken: nya vägar för undervisning i naturvetenskap 4. Hämtad från http://hdl.handle.net/2077/10628
Ausubel, D. (1968). Educational Psychology: A cognitive view. Holt, Rinehart and Winston, Inc.
Barnes, D. (2008). Exploratory talk for learning. I N. Mercer & S. Hodgkinson (Red.), Exploring talk in school (s. 1‒15). Sage. DOI: https://doi.org/10.4135/9781446279526.n1
Basheer, A., Kortam, N., Zahran, N., Hofestein, A., & Hugerat, M. (2018). Misconceptions among middle school students regarding the conservation of mass during combustion. EURASIA Journal of Mathematics, Science and Technology Education, 14(7), 3109−3122. https://doi.org/10.29333/ejmste/91664 DOI: https://doi.org/10.29333/ejmste/91664
Calor, S., Dekker, R., van Drie, J., & Volman, M. (2022). Scaffolding small groups at the group level: Improving the scaffolding behavior of mathematics teachers during mathematical discussions. Journal of the Learning Sciences, 31(3), 369−407. https://doi.org/10.1080/10508406.2021.2024834 DOI: https://doi.org/10.1080/10508406.2021.2024834
Chandrasegaran, A., Treagust, D., & Mocerino, M. (2008). An evaluation of a teaching intervention to promote students’ ability to use multiple levels of representation when describing and explaining chemical reactions. Research in Science Education, 38, 237−248. https://doi.org/10.1007/s11165-007-9046-9 DOI: https://doi.org/10.1007/s11165-007-9046-9
Chin, C., & Teou, L-Y. (2009). Using concept cartoons in formative assessment: Scaffolding students’ argumentation. International Journal of Science Education, 31(10), 1307−1332. https://doi.org/10.1080/09500690801953179 DOI: https://doi.org/10.1080/09500690801953179
De Jong, O., Blonder, R., & Oversby, J. (2013). How to balance chemistry education between observing phenomena and thinking in models. I I. Eilks & A. Hofstein (Red.), Teaching chemistry – a studybook: A practical guide and textbook for student teachers, teacher trainees and teachers (s. 97−126). Sense Publishers. https://doi.org/10.1007/978-94-6209-140-5_4 DOI: https://doi.org/10.1007/978-94-6209-140-5_4
Düsing, K., Asshoff, R., & Hammann, M. (2019a). Students’ conceptions of the carbon cycle: Identifying and interrelating components of the carbon cycle and tracing carbon atoms across the levels of biological organization. Journal of Biological Education, 53(1), 110‒125. https://doi.org/10.1080/00219266.2018.1447002 DOI: https://doi.org/10.1080/00219266.2018.1447002
Düsing, K., Asshoff, R., & Hammann, M. (2019b). Tracing matter in the carbon cycle: Zooming in on high school students’ understanding of carbon compounds and their transformations. International Journal of Science Education, 41(17), 2484‒2507. https://doi.org/10.1080/09500693.2019.1686665 DOI: https://doi.org/10.1080/09500693.2019.1686665
Ekvall, U., & Berg, A. (2010). Lärobok och kemipraktik. I I. Eriksson (Red.), Innehållet i fokus – kemiundervisning i finlandssvenska klassrum (s. 119–144). Stockholms universitets förlag. Hämtad från https://su.diva-portal.org/smash/record.jsf?pid=diva2:699415
Gibbons, P. (2006). Stärk språket, stärk lärandet: Språk- och kunskapsutvecklande arbetssätt för och med andraspråkselever i klassrummet. Hallgren & Fallgren.
Gibbons, P. (2010). Lyft språket Lyft tänkandet. Språk och lärande. Hallgren & Fallgren.
Gillies, R. M. (2014). Developments in classroom-based talk. International Journal of Educational Research, 63, 63‒68. https://doi.org/10.1016/j.ijer.2013.05.002 DOI: https://doi.org/10.1016/j.ijer.2013.05.002
Gkitzia, V., Salta, K., & Tzougraki, C. (2020). Students’ competence in translating between different types of chemical representations. Chemistry Education Research and Practice, 21(1), 307−330. https://doi.org/10.1039/c8rp00301g DOI: https://doi.org/10.1039/C8RP00301G
Harrison, A., & Treagust, D. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011−1026. https://doi.org/10.1080/095006900416884 DOI: https://doi.org/10.1080/095006900416884
Howe, C. (2014). Optimizing small group discourse in classrooms: Effective practices and theoretical constraints. International Journal of Educational Research, 63, 107−115. https://dx.doi.org/10.1016/j.ijer.2013.03.011 DOI: https://doi.org/10.1016/j.ijer.2013.03.011
Hundeide, K. (2003). Det intersubjektiva rummet. I O. Dysthe (Red.), Dialog, samspel och lärande (s. 143–166). Studentlitteratur.
Izquierdo-Acebes, E., & Taber, K. (2024). Secondary science teachers’ instructional strategies for promoting the construction of scientific explanations. Science & Education, 33, 853−899. https://doi.org/10.1007/s11191-022-00412-5 DOI: https://doi.org/10.1007/s11191-022-00412-5
Johnstone, A.H. (1991). Why is science so difficult to learn? Things are seldom what they seem. Journal of Computer Assisted Learning, 7(2), 75–83. https://doi.org/10.1111/j.1365-2729.1991.tb00230.x DOI: https://doi.org/10.1111/j.1365-2729.1991.tb00230.x
Kangaskorte, A., Lavonen, J., Pikkarainen, O., Saari, H., Sirviö, J., Vakkilainen, K-M., Viiri, J., & Vainio, J. (2017). Kemi Forma 7–9. Första upplagan. Schildts och Söderströms.
Kurtén-Finnäs, B. (2007). Concept cartoons eller begreppsbubblor i kemiundervisningen – en utmaning för tänkandet. I M. Aksela & M. Montonen (Red.), Uusia lähestymistapoja kemian opetukseen perusopetuksesta korkeakouluihin. (s. 67–70). Yliopistopaino Oy. Hämtad från https://www.oph.fi/sites/default/files/documents/46479_osa1kemianopetusta2007.pdf
Lemke, J.L. (1990). Talking science: Language, learning and values. Ablex Publishing Company.
Martin, N., Dornfeld Tissenbaum, C., Gnesdilow, D., & Puntambekar, S. (2019). Fading distributed scaffolds: The importance of complementarity between teacher and material scaffolds. Instructional Science, 47(1), 69−98. https://doi.org/10.1007/s11251-018-9474-0 DOI: https://doi.org/10.1007/s11251-018-9474-0
Mercer, N., Dawes, L., Wegerif, R., & Sams, C. (2004). Reasoning as a scientist: Ways of helping children to use language to learn science. British Educational Research Journal, 30(3), 359‒377. https://doi.org/10.1080/01411920410001689689 DOI: https://doi.org/10.1080/01411920410001689689
Mercer, N., Hennessy, S., & Warwick, P. (2019). Dialogue, thinking together and digital technology in the classroom: Some educational implications of a continuing line of inquiry. International Journal of Educational Research, 97, 187‒199. http://dx.doi.org/10.1016/j.ijer.2017.08.007 DOI: https://doi.org/10.1016/j.ijer.2017.08.007
Mercer, N., & Littleton, K. (2007). Dialogue and the development of children’s thinking: A sociocultural approach. Routledge. DOI: https://doi.org/10.4324/9780203946657
Meyer, D., & Pietzner, V. (2022). Reading textual and non-textual explanations in chemistry texts and textbooks – a review. Chemistry Education Research and Practice, 23(4), 768−785. https://doi.org/10.1039/d2rp00162d DOI: https://doi.org/10.1039/D2RP00162D
Mortimer, E., & Scott, P. (2003). Meaning making in secondary science classrooms. Open University Press.
Mönch, C., & Markic, S. (2024). Elements constituting and influencing in-service secondary chemistry teachers’ pedagogical scientific language knowledge. Chemistry Education Research and Practice, 25(1), 25−41. https://doi.org/10.1039/D3RP00140G DOI: https://doi.org/10.1039/D3RP00140G
Naylor, S., & Keogh, B. (2013). Concept Cartoons: What have we learnt? Journal of Turkish Science Education, 10(1), 3‒11.
Nelson, J. (2006). Hur används läroboken av lärare och elever? Nordic Studies in Science Education, 2(2), 16‒27. https://doi.org/10.5617/nordina.421 DOI: https://doi.org/10.5617/nordina.421
Papageorgiou, G., Amariotakis, V., & Spiliotopoulou, V. (2019). Developing a taxonomy for visual representation characteristics of submicroscopic particles in chemistry textbooks. Science Education International, 30(3), 181−193. https://doi.org/10.33828/sei.v30.i3.4 DOI: https://doi.org/10.33828/sei.v30.i3.4
Pham, L., & Tytler, R. (2022). The semiotic function of a bridging representation to support students' meaning-making in solution chemistry. Research in Science Education, 52(3), 853−869. https://doi.org/10.1007/s11165-021-10022-w DOI: https://doi.org/10.1007/s11165-021-10022-w
Puntambekar, S. (2022). Distributed scaffolding: Scaffolding students in classroom environments. Educational Psychology Review, 34(1), 451‒472. https://doi.org/10.1007/s10648-021-09636-3 DOI: https://doi.org/10.1007/s10648-021-09636-3
Puntambekar, S., & Kolodner, J. (2005). Toward implementing distributed scaffolding: Helping students learn science from design. Journal of Research in Science Teaching, 42(2), 185−217. https://doi.org/10.1002/tea.20048 DOI: https://doi.org/10.1002/tea.20048
Reid, N. (2020). The triangle model: The contribution of the late professor Alex H. Johnstone. Journal of Science Education, 2(1), 47‒61. https://ojs.aiou.edu.pk/index.php/jse/article/view/1703
Renvall, G., & Kurtén, B. (2024). Talking chemistry in small groups: Challenges with macroscopic, submicroscopic and symbolic representations among students aged 14-15 years. FMSERA Journal 6(2), 58−76. Hämtad från https://journal.fi/fmsera/article/view/127743
Robertson, A., & Shaffer, P. (2014). ”Combustion always produces carbon dioxide and water”: A discussion of university chemistry students use of rules in place of principles. Chemistry Education Research and Practice, 15(4), 763‒776. https://doi.org/10.1039/C4RP00089G DOI: https://doi.org/10.1039/C4RP00089G
Ruiz-Primo, M., & Furtak, E. (2007). Exploring teachers’ informal formative assessment practices and students’ understanding in the context of scientific inquiry. Journal of Research in Science Teaching, 44(1), 57–84. https://doi.org/10.1002/tea.20163 DOI: https://doi.org/10.1002/tea.20163
Säljö, R. (2014). Lärande i praktiken: ett sociokulturellt perspektiv. Studentlitteratur.
Taber, K. (2013). Revisiting the chemistry triplet: Drawing upon the nature of chemical knowledge and the psychology of learning to inform chemistry education. Chemistry Education Research and Practice, 14(2), 156‒168. https://doi.org/10.1039/C3RP00012E DOI: https://doi.org/10.1039/C3RP00012E
Taber, K. (2019). Progressing chemistry education research as a disciplinary field. Disciplinary and Interdisciplinary Science Education Research, 1(5). https://doi.org/10.1186/s43031-019-0011-z DOI: https://doi.org/10.1186/s43031-019-0011-z
Thomas, G. (2017). 'Triangulation:' an expression for stimulating metacognitive reflection regarding the use of 'triplet' representations for chemistry learning. Chemistry Education Research and Practice, 18(4), 533−548. https://doi.org/10.1039/C6RP00227G DOI: https://doi.org/10.1039/C6RP00227G
Treagust, D., Chittleborough, G., & Mamiala, T. (2003). The role of submicroscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25(11), 1353−1368. https://doi.org/10.1080/0950069032000070306 DOI: https://doi.org/10.1080/0950069032000070306
Utbildningsstyrelsen. (2014). Grunderna för läroplanen för den grundläggande utbildningen 2014. https://www.oph.fi/sv/utbildning-och-examina/grunderna-laroplanen-den-grundlaggande-utbildningen
Van de Pol, J., Volman, M., & Beishuizen, J. (2010). Scaffolding in teacher-student interaction: A decade of research. Educational Psychology Review, 22(3), 271−296. https://doi.org/10.1007/s10648-010-9127-6 DOI: https://doi.org/10.1007/s10648-010-9127-6
Van de Pol, J., Volman, M., & Beishuizen, J. (2011). Patterns of contingent teaching in teacher-student interaction. Learning and Instruction, 21(1), 46−57. https://doi.org/10.1016/j.learninstruc.2009.10.004 DOI: https://doi.org/10.1016/j.learninstruc.2009.10.004
Van de Pol, J., Volman, M., & Beishuizen, J. (2012). Promoting teacher scaffolding in small-group work: A contingency perspective. Teaching and Teacher Education, 28(2), 193−205. https://doi.org/10.1016/j.tate.2011.09.009 DOI: https://doi.org/10.1016/j.tate.2011.09.009
Van de Pol, J., Volman, M., Oort, F., & Beishuzen, J. (2014). Teacher scaffolding in small-group work: An intervention study. Journal of the Learning Sciences, 23(4), 600−650. https://doi.org/10.1080/10508406.2013.805300 DOI: https://doi.org/10.1080/10508406.2013.805300
Van Leeuwen, A., & Janssen, J. (2019). A systematic review of teacher guidance during collaborative learning in primary and secondary education. Educational Research Review, 27, 71−89. https://doi.org/10.1016/j.edurev.2019.02.001 DOI: https://doi.org/10.1016/j.edurev.2019.02.001
Webb, N. (2009). The teacher’s role in promoting collaborative dialogue in the classroom. British Journal of Educational Psychology, 79(1), 1−28. https://doi.org/10.1348/000709908X380772 DOI: https://doi.org/10.1348/000709908X380772
Wellington, J., & Osborne, J. (2001). Language and literacy in science education. Open University Press.
Wood, D., Bruner, J., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17(2), 89−100. DOI: https://doi.org/10.1111/j.1469-7610.1976.tb00381.x
Wood, D., Wood, H., Middleton, D. (1978). An experimental evaluation of four face-to-face teaching strategies. International Journal of Behavioral Development, 1, 131−147. https://doi.org/10.1177/016502547800100203 DOI: https://doi.org/10.1177/016502547800100203
Yin, R. K. (2007). Fallstudier: design och genomförande. Liber.
Downloads
Published
How to Cite
License
Copyright (c) 2026 Gunilla Renvall, Berit Kurtén

This work is licensed under a Creative Commons Attribution 4.0 International License.



