Comparing the integration of programming and computational thinking into Danish and Swedish elementary mathematics curriculum resources
DOI:
https://doi.org/10.31129/LUMAT.11.3.1940Keywords:
computational thinking, curriculum resources, mathematics, programmingAbstract
Computational thinking has become part of the mathematics curriculum in several countries. This has led recently available teaching resources to explicitly integrate computational thinking (CT). In this paper, we investigate and compare how curriculum resources developed in Denmark — digital teaching modules — and Sweden — printed mathematics textbooks — have incorporated CT in mathematics for grades 1–6 (age 7–12). Specifically, we identify and compare the CT and mathematical concepts, actions, and combinations in tasks within these resources. Our analysis reveals that Danish tasks are oriented toward CT concepts related to data, actions related to programming, and mathematical concepts within statistics. This is different from Swedish tasks, which are oriented toward CT concepts related to instructions and commands, actions related to following stepwise procedures, and mathematical concepts related to patterns. Moreover, what is most dominant in one country is almost or completely absent in the other. We conclude the paper by contrasting these two approaches with existing knowledge on computational thinking in school mathematics.
References
Aguilar, M. S., & Castaneda, A. (2022). Out of the public eye: Researching political factors that influence the implementation of research knowledge as part of educational reforms and mathematics textbooks. Implementation and Replication Studies in Mathematics Education, 2(1), 107–129. https://doi.org/10.1163/26670127-bja10001
Benton, L., Hoyles, C., Kalas, I., & Noss, R. (2017). Bridging primary programming and mathematics: Some findings of design research in England. Digital Experiences in Mathematics Education, 3(2), 115–138. https://doi.org/10.1007/s40751-017-0028-x
Bocconi, S., Chioccariello, A., Kampylis, P., Wastiau, P., Engelhardt, K., Earp, J., Horvath, M., Malagoli, C., Cachia, R., Giannoutsou, N., & Punie, Y. (2022). Reviewing computational thinking in compulsory education: State of play and practices from computing education (I. dos Santos, R. Cachia, N. Giannoutsou, & Y. Punie (Eds.)). Publications Office of the European Union. https://doi.org/https://doi.org/10.2760/126955
Bråting, K., & Kilhamn, C. (2021). Exploring the intersection of algebraic and computational thinking. Mathematical Thinking and Learning, 23(2), 170–185. https://doi.org/10.1080/10986065.2020.1779012
Bråting, K., & Kilhamn, C. (2022). The integration of programming in Swedish school mathematics: Investigating elementary mathematics textbooks. Scandinavian Journal of Educational Research, 66(4), 594–609. http://doi.org/10.1080/00313831.2021.1897879
Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. In Proceedings of the 2012 Annual Meeting of the American Educational Research Association (pp. 1–25). American Educational Research Association.
Børne- og Undervisningsministeriet (2018). Handlingsplan for teknologi i undervisningen. https://www.uvm.dk/publikationer/folkeskolen/2018-handlingsplan-for-teknologi-i-undervisningen
Børne og Undervisningsministeriet (2019). Fælles mål for teknologiforståelse [Common goals for technology comprehension]. https://emu.dk/sites/default/files/2019-02/GSK.%20F%C3%A6lles%20M%C3%A5l.%20Tilg%C3%A6ngelig.%20Teknologiforst%C3%A5else.pdf
Børne- og Undervisningsministeriet (2021a). Didaktiske prototyper - Format og vejledning [Didactical prototypes – Format and guidelines]. https://tekforsøget.dk/wp-content/uploads/2021/06/Format-og-vejledning-til-didaktiske-prototyper-maj-2021.pdf
Børne- og Undervisningsministeriet (2021b). Forsøg med teknologiforståelse i folkeskolens obligatoriske undervisning: Slutevaluering [Experiment with technology comprehension in compulsory education: Final evaluation]. https://www.uvm.dk/-/media/filer/uvm/aktuelt/pdf21/okt/211004-slutevaluering-teknologoforstaaelse.pdf
Caeli, E. N., & Yadav, A. (2020). TechTrends, 64(1), 29–36. https://doi.org/10.1007/s11528-019-00410-5
Clements, D. H., & Sarama, J. (1997). Research on Logo: A decade of progress. Computers in the Schools, 14(1–2), 9–46. https://doi.org/10.1300/J025v14n01_02
Dahl, B., & Stedøy, I. M. (2004). A Nordic community: Ideas of education and democracy in mathematics. In I. M. Stedøy (Ed.), Mathematics Education - The Nordic Way (pp. 1–10). TAPIR.
Department for Education. (2013). National curriculum in England: Computing programmes of study. National Curriculum in England. https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
diSessa, A. A., & Cobb, P. (2004). Ontological innovation and the role of theory in design experiments. Journal of the Learning Sciences, 13(1), 77–103. https://doi.org/10.1207/s15327809jls1301_4
Elicer, R., & Tamborg, A. L. (2022). Nature of the relations between programming and computational thinking and mathematics in Danish teaching resources. In U. T. Jankvist, R. Elicer, A. Clark-Wilson, H.-G. Weigand, & M. Thomsen (Eds.), Proceedings of the 15th International Conference on Technology in Mathematics Teaching (pp. 45–52). Aarhus University.
Gadanidis, G. (2017). Five affordances of computational thinking to support elementary mathematics education. Journal of Computers in Mathematics and Science Teaching, 36(2), 143–151.
Gould, R. (2021). Towards data scientific thinking. Teaching Statistics, 43(S1), S11–S22. https://doi.org/10.1111/test.12267
Heintz, F., Mannila, L., Nordén, L. Å., Parnes, P., & Regnell, B. (2017). Introducing programming and digital competence in Swedish K-9 education. In V. Diagené & A. Hellas (Eds.), International Conference on Informatics in Schools: Situation, Evolution, and Perspectives (pp. 117–128). Springer. https://doi.org/10.1007/978-3-319-71483-7_10
Helenius, O., & Misfeldt, M. (2021). Programmeringens väg in i skolan: en jämförelse mellan Danmark och Sverige. [Programming’s way into school – a comparison between Denmark and Sweden]. In K. Bråting, C. Kilhamn, & L. Rolandsson (Eds.), Programmering i skolmatematiken: möjligheter och utmaningar (pp. 39–56). Studentlitteratur.
Kohen-Vacs, D., Kynigos, C., & Milrad, M. (2020). On the integration of learning mathematics and programming. In S.-C. Kong, H. U. Hoppe, T.-C. Hsu, R.-H. Huang, B.-C. Kuo, R. K.-Y. Li, C.-K. Looi, M. Milrad, J.-L. Shih, K.-F. Sin, K.-S. Song, M. Specht, F. Sullivan, & J. Vahrenhold (Eds.), Proceedings of International Conference on Computational Thinking Education 2020 (pp. 53–56). The Education University of Hong Kong.
Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D., & Duschl, R. A. (2020). Computational thinking is more about thinking than computing. Journal for STEM Education Research, 3(1), 1–18. https://doi.org/10.1007/s41979-020-00030-2
Modeste, S. (2018). Relations between mathematics and computer science in the French secondary school: A developing curriculum. In Y. Shimizu & R. Vithal (Eds.), ICMI Study 24, School Mathematics Curriculum Reforms: Challenges, Changes and Opportunities (pp. 277–284). International Commission on Mathematical Instruction and University of Tsukuba.
Olofsson, A. D., Lindberg, J. O., Young Pedersen, A., Arstorp, A. T., Dalsgaard, C., Einum, E., & Willermark, S. (2021). Digital competence across boundaries - beyond a common Nordic model of the digitalisation of K-12 schools? Education Inquiry, 12(4), 317–328. https://doi.org/10.1080/20004508.2021.1976454
Palts, T., & Pedaste, M. (2020). A model for developing computational thinking skills. Informatics in Education, 19(1), 113–128. https://doi.org/10.15388/infedu.2020.06
Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.
Pérez, A. (2018). A framework for computational thinking dispositions in mathematics education. Journal for Research in Mathematics Education, 49(4), 424–461. https://doi.org/10.5951/jresematheduc.49.4.0424
Remillard, J. T. (2005). Examining key concepts in research on teachers’ use of mathematics curricula. Review of Educational Research, 75(2), 211–246. https://doi.org/10.3102/00346543075002211
Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142–158. https://doi.org/10.1016/j.edurev.2017.09.003
Swedish National Agency of Education (2018). Curriculum for the compulsory school, preschool class and school-age educare 2011. Elanders Sverige AB.
Tamborg, A. L., Elicer, R., Bråting, K., Geraniou, E., Jankvist, U.T., Misfeldt, M. (2023). The politics of computational thinking and programming in mathematics education: Comparing curricula and resources in England, Sweden, and Denmark. In B. Pepin, G. Gueudet, & J. Choppin (Eds.), Handbook of Digital Resources in Mathematics Education. Springer. https://doi.org/10.1007/978-3-030-95060-6_55-1
Wedman, L. (2020). The concept concept in mathematics education: A concept analysis. [Doctoral thesis, University of Gothenburg]. http://hdl.handle.net/2077/64096
Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127–147. https://doi.org/10.1007/s10956-015-9581-5
Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi.org/10.1145/1118178.1118215
Downloads
Additional Files
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2023 Raimundo Elicer, Andreas Lindenskov Tamborg, Kajsa Bråting, Cecilia Kilhamn
This work is licensed under a Creative Commons Attribution 4.0 International License.