Elevers uppfattningar av systemmodellering i arbete med hållbarhetsfrågor
DOI:
https://doi.org/10.31129/LUMAT.11.1.1883Keywords:
systemtänkande, geografiundervisning, hållbarhetsfrågorAbstract
Artikeln utforskar svenska gymnasieelevers uppfattningar av att använda systemmodeller som ett sätt att arbeta med hållbarhetsfrågor i geografiundervisning. Systemtänkande lyfts fram av forskare som ett angreppssätt elever kan lära sig för att hantera komplexa frågor som rör systemförändringar med påverkan på en hållbar framtid. Geografiundervisning anses ha potential att utveckla elevers systemtänkande genom ämnets tvärvetenskapliga karaktär där natur, människa, samhällen och platser och kan vävas samman och förstås som en helhet. Det är dock få studier som introducerat systemmodellering i geografiundervisning och än mer sällsynt är undersökningar som fokuserar på elevernas röster om fenomenet att använda systemmodeller för att ta sig an komplexa hållbarhetsfrågor. Artikeln baseras på 32 intervjuer och 138 skriftliga reflektioner där elever beskriver hur de uppfattar att använda en specialdesignad systemmodell, kallad sambandsväven under två undervisningsmoment. Elevernas uppfattningar analyserades fenomenografiskt och visar tre kvalitativt skilda sätt att uppfatta arbetet med sambandsväven som ett sätt att: a) modellera ett komplext innehåll med systemredskap, b) representera ett innehåll som system med verkliga exempel och c) utforska verkligheten som system. Resultatet visar också att vid det första tillfället då eleverna arbetade med sambandvävarna upplevdes de som redskap och det fanns ett glapp mellan modellarbetet och de verkliga problemen. Den andra gången uppfattades fenomenet som ett sätt att utforska verkligheten som system och fler aspekter av systemtänkande utvecklades. Artikeln bidrar vidare med kunskap om vad elever behöver ges möjlighet att urskilja för att kunna utveckla systemtänkande genom geografiundervisningen.
Students perceptions of systems modelling about sustainability issues
The article explores students’ experiences while using system models to analyze sustainability issues in geography teaching. Students at upper secondary school level in Sweden participated in a long-term teaching design study where system models were introduced and used to analyze complex issues. After the teaching segment, the students were interviewed about their experiences. The data, consisting of 32 interviews and 138 written reflections, was analyzed using phenomenography. The results show three qualitatively different ways of experiencing what it means to work with system models to deal with sustainability issues. The students perceived these as: a) a tool for modelling complex content, b) a representation of complex issues, and c) a way to explore reality in terms of systems. The results were quantified to compare if students’ experiences differed in relation to the teaching that they participated in. The conclusions show that during the first time that the students used the models they experienced the system models as a tool and there was a gap between the models and the real issues. Only few aspects of systems thinking developed. The second time, when the students used the models during a longer period of time they experienced the model work as a way to explore real problems as systems and developed more aspects of systems thinking. The article contributes with knowledge about what students need to discern to be able to develop systems thinking in geography and what learning teaching need to enable.
Keywords: systems thinking, geography teaching, sustainability issues
Fulltext in Swedish.
References
Armstrong McKay, D., Staal, A., Abrams J. F., Winkelmann R., Sakschewski B., Loriani S., Fetzer I., Cornell S. E., Rockström J., Lenton T. M. (2022). Exceeding 1.5°C global warming could trigger multiple climate tipping points. Science, 377(6611). https://doi:10.1126/science.abn7950
Arnold, R. D., & Wade, J. P. (2015). A definition of systems thinking: A systems approach. Procedia Computer Science, 44, 669–678. https://doi.org/10.1016/j.procs.2015.03.050
Barman C. R., Griffiths A. K. & Okebukola P. A. O. (1995). High school students' concepts regarding food chains and food webs: A multinational study. International Journal of Science Education, 17(6), 775–782. https://doi.org/10.1080/0950069950170608
Ben-Zvi-Assaraf, O., & Orion, N. (2010). Four case studies, six years later: Developing system thinking skills in junior high school and sustaining them over time. Journal of Research in Science Teaching, 47(10), 1253–1280 https://doi.org/10.1002/tea.20383
Ben-Zvi-Assaraf, O., & Orion, N. (2005). Development of system thinking skills in the context of earth system education. Journal of Research in Science Teaching, 42(5), 518–560 https://doi.org/10.1002/tea.20061
Bermudez, A. (2015). Four tools for critical inquiry in history, social studies, and civic education. Revista de estudios sociales, 52, 102–118. https://doi.Org/10.7440/res52.2015.07
Block T., Van Poeck K. & Leif Östman (2019). Tackling wicked problems in teaching and learning. Sustainability issues as knowledge, ethical and political challenges. In K. Van Poeck, L. Ostman & J. Ohman (Red.), Sustainable development teaching ethical and political challenges. (ss. 28–39). Routledge
Carlgren, I. (2015). Kunskapskulturer och undervisningspraktiker. Daidalos.
Centola, D., Wilensky, U. & Mckenzie. E. (2000). A Hands-on Modeling Approach to Evolution: Learning about the Evolution of Cooperation and Altruism Through Multi-Agent Modeling - The EACH Project. In B.J. Fishman & S.F. O'Connor-Divelbiss (Eds.). International Conference of the Learning Sciences. Facing the Challenges of Complex Real-world Settings. Psychology Press. (ss. 166-173). https://doi.org/10.4324/9780203763865
Checkland, P. (1981). Systems thinking, systems practice. Wiley
Checkland, P. & Scholes, P. (1990). Soft systems methodology in action. Wiley
Collier-Reed, B. & Ingerman, Å-I. (2013). Phenomengraphy: From critical aspects to knowledge claim. International Perspectives on Higher Education Research 9, 243–260. https://doi.org/10.1108/S1479-3628(2013)0000009016
Cox, M., Steegen, A., & Elen, J. (2018). Using causal diagrams to foster systems thinking in geography education. International Journal of Designs for Learning, 9(1), 34–48. https://doi.org/10.1080/00221341.2019.1608460
Dessen Jankell, L. & Johansson, P. (2022). System Geographical Webbing as an Object of Knowing to Analyze Sustainability Issues in Geography. Journal of geography education, 50(3), 119–140. https//doi: 10.18452/25713
Dessen Jankell, L. (2023). Sambandsvävar för att utveckla elevers systemgeografiska kunnande. Nordidactica 13(2), 75–110
Eriksson, I. (2017). Lärandeverksamhet som redskap i en Learning study. In I. Carlgren (Red.), Undervisningsutvecklande forskning – exemplet learning study (ss. 61–81). Gleerup
Favier, T.T. & van der Schee, J.A. (2014). The effects of geography lessons with geospatial technologies on the development of high school students’ relational thinking. Computers and Education, 76, 225–36. https://doi.org/10.1016/j.compedu.2014.04.004
Flood., R. (2010). The Relationship of systems thinking to action research. Systemic Practice and Action Research. 23(4), 269–284. https://doi.org/10.1007/s11213-010-9169-1
Grotzer, T. A., & B. Bell-Basca. (2003). How does grasping the underlying causal structures of ecosystems impact students’ understanding? Journal of Biological Education, 38(1), 16–29. https://doi.org/10.1080/00219266.2003.9655891
Hmelo-Silver, C. E., Marathe, S., & Liu, L. (2007). Fish swim, rocks sit, and lungs breathe: Expert-novice understanding of complex systems. The Journal of the Learning Sciences, 16(3), 307–331. https://doi.org/10.1080/10508400701413401
International Geographical Union, Commission on Geographical Education IGU-CGE. (2016). International charter on geographical education [pdf]. https://www.igu-cge.org/wp-content/uploads/2019/03/IGU_2016_eng_ver25Feb2019.pdf (30 March 2022)
Jacobson, M. J. & Wilensky, U., (2014). Complex systems and the learning sciences. In R. K. Sawyer (Red.), The Cambridge handbook of the learning sciences (Andra utgåvan.), (ss. 999–1062). Cambridge University Press.
Jacobson, M. J., & Wilensky, U. (2006). Complex systems in education: Scientific and educational importance and implications for the learning sciences. The Journal of the Learning Sciences, 15(1), 11–34. https://doi.org/10.1207/s15327809jls1501_4
Jordan, R. C. , Brooks,W. R. , Hmelo-Silver, C., Eberbach C. & Sinha S. (2014). Balancing broad ideas with context: an evaluation of student accuracy in describing ecosystem processes after a system-level intervention, Journal of Biological Education, 48(2), 57–62. https://doi.org/10.1080/00219266.2013.821080
Karkdijk, J. (2022). Mysteries to support geographical relational thinking in secondary education. Doktorsavhandling, Dutch Research Council (NWO). Quaeris Media BV, Goes/Breda, The Netherlands. ISBN: 978-94-643-7235-9
Larsson, S. (1986). Kvalitativ analys: Exemplet fenomenografi. Studentlitteratur
Lezak, S. B., & Thibodeau, P. H. (2016). Systems Thinking and Environmental Concern. Journal of Environmental Psychology, 46, 143–153. https://doi.org/10.1016/j.jenvp.2016.04.005
Mambrey, S, Schreiber, N., & Schmiemann, P. (2020). Young students’ reasoning about ecosystems: the role of systems thinking, knowledge, conceptions, and representation. Research in Science Education. 52, 79–98. https://doi.org/10.1007/s11165-020-09917-x
Marton, F. (1981). Phenomenography describing conceptions of the world around us. Instructional Science, 10(2), 177–200.
Marton, F., & Pong, W. (2005). On the unit of description in phenomenography. Higher Education Research & Development, 24(4), 335–348.
Marton, F. (2015). Necessary Conditions of Learning. Routledge.
Maude, A. (2022). Using geography’s conceptual ways of thinking to teach about sustainable development. International Research in Geographical and Environmental Education, 32(1), 1–16. https://doi.org/10.1080/10382046.2022.2079407
Meadows, D. H. (2008). Thinking in Systems: A Primer (Wright, Diana, Red.). Chelsea Green Publishing.
Mehren, R., Rempfler, A., Buchholz, J., Hartig, J., & Ulrich-Riedhammer, E. M. (2018). System competence modelling: Theoretical foundation and empirical validation of a model involving natural, social and human-environment systems. Journal of Research in Science Teaching, 55(5), 685–711. https://doi.org/10.1002/tea.21436
Palmer, D. H. (1996). Students' application of the concept of interdependence to the issue of preservation of species: Observations on the ability to generalize. Journal of Research in Science Teaching, 34, 837–850. https://doi.org/10.1002/(SICI)1098-2736(199710)34:8<837::AID-TEA6>3.0.CO;2-W
Pang. M. F. & Ki, W. W. (2016). Revisiting the idea of critical aspects, Scandinavian Journal of Educational Research, 60(3), 323–336.
Penner, D.E. (2000). Explaining systems: Investigating middle school students' understanding of emergent phenomena. Journal of Research in Science Teaching 37(8), 784–806. https://doi.org/10.1002/1098-2736(200010)37:8<784::AID-TEA3>3.0.CO;2-E
Resnick, M. & Wilensky, U. (1999). Thinking in Levels: A dynamic systems approach to making sense of the world. Journal of Science Education and Technology, 8(1), 3–19. https://doi.org/10.1023/A:1009421303064
Richmond, B. (1993). Systems thinking: critical thinking skills for the 1990s and beyond. System Dynamics Review 9(2), 113–133. https://doi.org/10.1002/sdr.4260090203
Rieckmann, M. (2012). Future-oriented higher education: Which key competencies should be fostered through university teaching and learning? Futures 44(2), 127–135 https://doi.org/10.1016/j.futures.2011.09.005
Rockström, J., Steffen, W., Noone, K. et al. (2009). A safe operating space for humanity. Nature 461, 472–475. https://doi.org/10.1038/461472a
Roychoudhury, A., Shepardson, D.P., Hirsch, A., Niyogi, D., Mehta, J. & Top, S. (2017). The need to introduce system thinking in teaching climate change. Science Educator, 25(2), 73–81. https://eric.ed.gov/?id=EJ1132081
Sæther, E. (2019). Baerekraftig handlerkraft i samfunnsfag – hva innebraer dey? I Kvamme & Saether (red), Baerekraft, (ss. 97–114). Fagbokforlaget,
Steffen, W. e., & al, e. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223). http://doi.org/10.1126/science.1259855
Stieff, M., & Wilensky, U. (2003). Connected Chemistry? Incorporating interactive simulations into the chemistry classroom. Journal of Science Education and Technology, 12(3), 285–302. http://www.jstor.org/stable/40188770
Sörlin, S. (2017). Antropocen: En essä om människans tidsålder. Weyler.
UNESCO. (2018). Issues and trends in education for sustainable development. I A. Leicht, J. Heiss and W. J. Byun (Red.). https://unesdoc.unesco.org/ark:/48223/pf0000261802
Wiek, A., Withycombe, L., Redman, C.L. and Banas Mills, S. (2011). Moving forward on competence in sustainability research and problem solving. Environment: Science and Policy for Sustainable Development 53(2), 3–12. https://doi.org/10.1080/00139157.2011.554496
Wetlesen, A. & Eie, S. (2019). Geografisk formation: En resa genom Norges län. I M. Ferrer & A. Wetlesen, Critical thinking in the social sciences, (ss. 88–109). Universitetsförlaget.
Wetlesen, A. & Eie, S. (2022). ‘Sted’ som utgangspunkt for kritisk tenkning i geografi. Acta Didactica Norden, 6(2). https://doi.org/10.5617/adno.8994
Downloads
Published
How to Cite
License
Copyright (c) 2023 Lotta Dessen Jankell
This work is licensed under a Creative Commons Attribution 4.0 International License.