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Computational Science

Computational Science serves as a learning tool or becomes a subject of 
learning. However, computational science in science classes requires not 

only devices and software in institutions and schools but also a good 
selection of concepts contextualized to authentic problems.
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“The final result of a logical and mathematical procedure, 
which transforms chemical information encoded within a 
symbolic representation of a molecule into a useful number or 
the result of some standardized experiment.”
Todeschini R, Consonni V (2009) Molecular descriptors for chemoinformatics. Wiley-VCH, 
Weinheim

Rognan D. (2007). Chemogenomic approaches to rational drug design. British journal of pharmacology, 152(1), 38–52. https://doi.org/10.1038/sj.bjp.0707307

Molecular descriptors



Figure. Venn diagrams representation for TPASK as an interdisciplinary endeavour connecting TK with PK and SK. ECC within 
technological pedagogical chemistry knowledge (TPAChK) adapted from the TPASK framework.

Rodríguez-Becerra, J., Cáceres-Jensen, L., Díaz, T., Druker, S., Bahamonde Padilla, V., Pernaa, J., & Aksela, M. (2020). Developing technological pedagogical science knowledge through educational
computational chemistry: a case study of pre-service chemistry teachers’ perceptions. Chemistry Education Research and Practice, 21(2), 638-654.
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TPASK Framework



Web Tools
Protein Data Bank, 

ChEMBL, PubChem, 
among others.

Teaching Methods
Student-centered approach: 
e.g. Project/Problem-Based 

Learning
 Assessment 

Pre-post testing, teacher 
observations, among 

others.
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Figure. Venn diagrams representation for TPASK as an interdisciplinary endeavour connecting TK with PK and SK. ECC within 
technological pedagogical chemistry knowledge (TPAChK) adapted from the TPASK framework.
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TPASK Framework



TPASK: seven constructs of 
knowledge

Cáceres-Jensen, L., Rodríguez-Becerra, J., Jorquera-Moreno, B., Escudey, M., Druker-Ibañez, S., Hernández-Ramos, J., et al. (2021). Learning Reaction Kinetics through Sustainable Chemistry of Herbicides: A Case Study of Preservice Chemistry 
Teachers’ Perceptions of Problem-Based Technology Enhanced Learning. Journal of Chemical Education 98(5), 1571-1582. doi: 10.1021/acs.jchemed.0c00557.
Rodríguez-Becerra, J., Cáceres-Jensen, L., Díaz, T., Druker, S., Bahamonde Padilla, V., Pernaa, J., et al. (2020). Developing technological pedagogical science knowledge through educational computational chemistry: a case study of pre-service 
chemistry teachers’ perceptions. Chemistry Education Research and Practice 21(2), 638-654. doi: 10.1039/c9rp00273a.

• TK is how to use emerging technologies in a specific scientific domain.

• SK represents understanding the scientific community’s models, protocols, practices, and products in science 
(Cáceres-Jensen et al., 2021).

• PK is the general knowledge about learning and teaching.

• PSK represents the understanding of models, protocols, practices and products of the science fields included in 
science education and how they can be used to implement learning environments that promote student learning. 
In addition, it consists of an understanding of students’ construction of scientific knowledge in teaching contexts 
(Cáceres-Jensen et al., 2021).

• TSK represents the knowledge of how to use models and simulations to illustrate and apply scientific concepts using 
emerging technology, e.g., that linked to scientific computing (Rodríguez-Becerra et al., 2020).

• TPK is the knowledge about the possibilities and challenges involved in different ways of teaching and learning.

• TPASK understands how to use emerging science technology to implement learning environments that promote 
science learning in students (Rodríguez-Becerra et al., 2020).



Tuvi-Arad, I. (2022). Computational Chemistry in the Undergraduate Classroom – Pedagogical Considerations and Teaching Challenges. Israel Journal of Chemistry 62(1-2), e202100042. doi: https://doi.org/10.1002/ijch.202100042.

Computational Chemistry: 
Teaching Challenges






This High-performance computing is transforming both scientific discovery and science 
education. To explore its pedagogical potential, we embedded an Educational 
Computational Chemistry module—focused on computer-aided drug design for 
SARS-CoV-2—into a first-semester Physical Chemistry course for 20 pre-service chemistry 
teachers.

Aim & Objectives



METHODOLOGY



Methodology

• This study employed a quantitative, cross-sectional design to examine the integrated 
technological, pedagogical, and scientific knowledge (TPASK) of pre-service chemistry 
teachers. Participants were enrolled in a physicochemistry course that integrated 
computational chemistry tools at a Chilean university, in a program that prepares 
secondary science teachers (chemistry, biology, physics, mathematics).

• A total of 20 participants from various semesters (4th to 8th) completed the study. The 
survey was administered digitally during class time with informed consent, adhering to 
ethical research protocols.



Methodology

• The instrument was designed based on the TPASK theoretical framework and consisted of 56 
Likert-scale items. Each item was reviewed by field experts for content validity and piloted with a 
small sample (n = 5) for clarity and reliability prior to full deployment.

• Data analysis was performed using SPSS and Python. Reliability was evaluated using Cronbach’s 
alpha for each domain. Descriptive statistics (means, standard deviations) were calculated for all 
constructs. Exploratory Factor Analysis (EFA) was conducted to assess construct validity. 
Regression analysis identified predictors of TPASK, while Baron and Kenny’s mediation framework 
and Sobel tests were applied to test indirect effects. Interaction terms were examined to explore 
potential moderating relationships. Finally, cluster analysis using K-means and Principal Component 
Analysis (PCA) was used to identify learner profiles based on knowledge scores across constructs.



The UMCE pre-service Chemistry 
Teacher

• During this course, students will learn to apply physicochemical knowledge (thermodynamic) and 
some of the tools of computational chemistry and chemoinformatics to understand current research 
topics in medical and environmental chemistry.

• After this course, students will gain experience in authentic practical research micro-projects in socio-
scientific problems from a perspective that integrates chemical and computational knowledge. Their 
proposals can be used as opportunities for developing chemical knowledge and scientific skills in the 
school context.



PHYSICAL CHEMISTRY QUI6048
Lectures Mondays 16:15 – 17:45 and 18:00 -19:30.
Periodic Labs Tuesday and Thursday 9:45 - 11:15 AM and 11:30 - 13:00 AM.
Learning core Modelling drug-type compounds of interest to human health: introduction to Computational Methods in the discovery of 

compounds for treating diseases.
Introduction to QSAR Modeling: chemical compounds of interest to human health and the environment.

Pedagogical 
Strategy 

Direct Instruction; Hands-On Computational Learning; Problem-based Learning

Instruction Model Blended learning
Module resources Digital Resources Websites of interest

- WHO. Coronavirus disease outbreak 
2019.

- Center for Systems Science and 
Engineering (CSSE) at Johns Hopkins 
University. COVID-19 Dashboard. 

- Novel Coronavirus Resource Directory.

https://www.who.int/es/emergencies/diseases/novel-coronavirus-2019

https://bit.ly/2PMY0eN

https://www.elsevier.com/novel-coronavirus-covid-19

Databases

- DrugBank
- Pubchem
- ChEBML 
- Protein Data Bank

https://go.drugbank.com

https://pubchem.ncbi.nlm.nih.gov

https://www.ebi.ac.uk/chembl

https://www.rcsb.org
Research Grade Scientific Software

- Avogadro
- AutoDock
- MglTools
- Discovery Studio Visualizer

https://avogadro.cc

http://autodock.scripps.edu/downloads/autodock-registration/autodock-4-2-download-
page

http://mgltools.scripps.edu

https://discover.3ds.com/discovery-studio-visualizer-download

https://www.who.int/es/emergencies/diseases/novel-coronavirus-2019
https://bit.ly/2PMY0eN
https://www.elsevier.com/novel-coronavirus-covid-19
https://go.drugbank.com/
https://pubchem.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/chembl
https://www.rcsb.org/
https://avogadro.cc/
http://autodock.scripps.edu/downloads/autodock-registration/autodock-4-2-download-page
http://autodock.scripps.edu/downloads/autodock-registration/autodock-4-2-download-page
http://mgltools.scripps.edu/
https://discover.3ds.com/discovery-studio-visualizer-download




RESULTS AND 
DISCUSSION



PBL

Module implementation 



PBL

The PBL scenario propose to the students the 
challenge of: 

“Can one or more of the FDA-approved compounds proposed 
by Singh and Florez (2020) be identified as plausible 
inhibitors of the SARS-CoV-2 main protease (PDB ID: 6LZE), 
and how can computational evidence support this 
hypothesis?“

Module implementation 



Module implementation 



Module implementation 





• Descriptive statistics revealed moderately high self-perceptions across all TPASK 
domains. 

• Technological Knowledge (TK) exhibited the highest mean (M = 3.97, SD = 
0.30), followed by Scientific Knowledge (SK) and Technological Pedagogical 
Knowledge (TPK). This trend suggests a student cohort that feels confident with 
digital tools and scientific content knowledge, though slightly less confident in 
integrating these into pedagogical strategies. 

• Reliability analysis using Cronbach's alpha indicated excellent internal 
consistency across constructs, with all values exceeding α = 0.82, supporting 
the reliability of the instrument.

Descriptive Statistics and Reliability 



• A multiple regression model predicting TPASK from PK, SK, TK, PSK, TSK, and 
TPK showed excellent model fit (R² = 0.934, p < .001). 

• Significant predictors included:
• TPK (β = 0.645, p < .001): the strongest predictor.
• TK (β = 0.254, p = .003): a meaningful but smaller contributor.
• PK (β = –0.156, p = .049): a small but negative association.
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Cluster Analysis

K-means clustering and PCA dimensionality 
reduction revealed three distinct knowledge profiles 
among students:

• Profile 0: Advanced Integrators – high 
across all domains (e.g., TK = 4.69, TPASK = 
4.08).

• Profile 1: Developing Learners – lowest in all 
domains (e.g., SK = 3.16, TPASK = 2.97).

• Profile 2: Emerging Competents – moderate 
levels (e.g., TK = 3.75, TPASK = 3.63).



CONCLUSION



• The Central Role of TPK
• The finding that TPK is both the strongest predictor and a significant 

mediator in TPASK development reinforces the idea that pre-service 
teachers must go beyond acquiring tools or content knowledge. They must 
be explicitly taught how to design, adapt, and evaluate pedagogical 
strategies that leverage technology to teach science meaningfully.

Conclusion



• Limited Influence of PK and SK
• The weak or negative role of general Pedagogical Knowledge (PK), and the 

nonsignificant role of Scientific Knowledge (SK), suggest that competence in 
TPASK cannot be inferred from strength in these domains alone. Instead, 
what appears to matter most is the degree to which pedagogical and 
technological skills are blended—a call to restructure how we think about 
and design teacher preparation curricula.

Conclusion



• Implications for Chemistry Teacher Education
These findings suggest that teacher education programs should:
• Explicitly teach TPK and TPASK through scenario-based learning, 

interdisciplinary problem-solving, and computational tool immersion.
• Assess students not only on disciplinary understanding but on their ability 

to design and justify technology-enhanced learning experiences.
• Use cluster-based profiling to adapt instruction in real time, ensuring equity 

in readiness and opportunities for growth.

Conclusion
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