

Centre for Advanced Learning Technologies in STEAM (CALTSTEAM), University of Johannesburg

Culturally-Anchored Virtual and Augmented Reality Simulations

Engaging Science Learners at Disadvantaged Schools in South Africa in the Use of Culturally-Anchored Virtual Reality Simulations for Inquiry-Based Learning

Authors

Prof. U. Ramnarain, Prof. M.Penn and Miss. N.M Mdlalose

Introduction

Problem:

- Lack of culturally relevant science learning tools in African schools
- Low performance in science education in international benchmarks (e.g., TIMSS)
 Solution:
- CAVARS: Virtual and Augmented Reality Simulations integrating African cultural knowledge

Theoretical Framework

- Kolb's Experiential Learning: Experience, reflection, conceptualization, experimentation
- Multimodal Learning: Visual + Auditory + Kinesthetic for deeper engagement

Methodology

- **Design**: Qualitative case study
- Participants: Grade 8–9 learners from disadvantaged schools
- **Provinces**: KwaZulu-Natal, Limpopo, Northern Cape
- Tools: VR headsets, AR tablets
 CAVARS Examples:
- Umqombothi brewing (Chemistry)
- Cultural drumming (Sound)
- Moon phases (Astronomy)

DISCUSSION

- VR/AR technologies improve science learning through emotional and conceptual engagement
- Cultural integration boosts relevance and learner identity
- Hands-on learning matches learner preferences
- Equity in access is a critical concern

Theme	insight	Quote
Emotional Engagement	Excitement and novelty	"Like another world"
Conceptual Understanding	Better grasp of scientific phenomena	"I know types of waves"
Learning Preferences	Kinesthetic and visual learning preferred	"Watching helped more than reading"
Cultural Relevance	Pride in seeing culture in science	"Drumming and beer have science in them"
Tech Access	Demand for broader implementation	"Tell our principal to buy iPads"

Conclusion

- CAVARS offer transformative, culturally anchored learning
- Enhance equity and engagement in under-resourced classrooms
- Call for scalable, sustainable implementation

References

Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. Prentice-Hall. Makransky, G., Terkildsen, T. S., & Mayer, R. E. (2019). Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learning and Instruction, 60, 225–236.

Moreno, R., & Mayer, R. E. (2007). Interactive multimodal learning environments. Educational Psychology Review, 19(3), 309–326.

National Research Council. (2000). Inquiry and the National Science Education Standards: A guide for teaching and learning. National Academies Press. https://doi.org/10.17226/9596
Reddy, V., Visser, M., Winnaar, L., Arends, F., Juan, A., Prinsloo, C. H., & Isdale, K. (2020). TIMSS 2019:

Highlights of South African Grade 5 Results in Mathematics and Science. Human Sciences Research Council.

Retrieved from https://www.timss-sa.org.za.