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Abstract: To investigate a dynamic learning environment’s (DLE) facilitation of students’ figural 
generalization of figural patterns, this study scrutinizes 12 pre-service teachers’ efforts to 
generalize figural patterns using a DLE that offers dynamically adapting shapes. The shapes 
support identification of figural patterns’ figural commonalities. In video recorded task-based 
interviews, the pre-service teachers worked in pairs to solve figural pattern tasks using the DLE. 
Duval’s (2006) theory of semiotic representations is utilized to identify characteristics of the pre-
service teachers’ conversions and treatments. Results show that they adopted an experimental 
approach and utilized the DLE to create multiple valid symbolic generalizations, and they used 
symbolic treatments to support some solutions. However, they would often treat only one 
exemplar of the figural pattern, weakening the basis for their generalizations, and they struggled 
to express verbally the figural patterns’ generalized structure. These results raise concerns about 
the algebraic thinking involved in their solution processes. Implications of this study include the 
identification of crucial factors of DLEs designed to support students’ exploration of figural 
patterns. 
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1 Introduction 

Mason (1996) approached algebraic thinking through the concept of generalization. He 
claimed that acts of generalizations, characterized by detecting sameness and difference 
in essential features, are the basis of algebraic thinking. In the effort of teaching students 
to generalize, figural pattern tasks are often used (Jackson & Stenger, 2024), which Rad-
ford (2008) regarded as a “route to algebra” (p. 84). In such tasks, students are typically 
provided with the first three exemplars of a growing pattern (Figure 1) and asked to draw 
consecutive exemplars, find the number of elements in exemplars close by or far away, or 
create a general (symbolic) rule to find the number of elements in any exemplar. Here, we 
refer to the process of creating such general rules as figural pattern generalization. 

Figure 1.  The Cross Numbers 

 
 

In generalizing figural patterns, students most often derive symbolic expressions 
either numerically through inspection of the number of elements in the visualized figure 
exemplars, (numerical generalization) or figurally through identification of 
commonalities in the exemplars’ figural features (figural generalization, Bills & Rowland, 
1999; Dörfler, 1991; El Mouhayar, 2018; Küchemann, 2010). Figural features are the 
patterns’ geometric, perceptually available terms (Rivera & Becker, 2007), exemplified by 
the four ‘arms’ in Figure 1. A figural generalization of this pattern may involve identifying 
the monotonously increasing number of dots in each arm, making the length of each arm 
similar to the exemplars’ value of 𝑛𝑛. This is a commonality of the figural pattern exemplars. 
Thus, we have found “a way of structuring and organizing counting” (Hewitt, 1998, p. 20), 
illustrated in Figure 2 for 𝑛𝑛 = 2. A figural pattern may often be structured in many ways, 
and two other ways are displayed in Figure 2. 
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Figure 2.  Three different ways of seeing commonalities in The Cross Numbers (in the 𝑛𝑛 = 3 ex-
emplar), giving rise to the equivalent symbolic generalizations (𝑛𝑛 + 1) + 3𝑛𝑛 (a), 4𝑛𝑛 + 1 (b), and 
4(𝑛𝑛 + 1) − 3 (c). Note that the 𝑛𝑛 + 1 stripes are stripes designed with a small bar, included to 
single out the “extra” dot corresponding to +1 in the expression 𝑛𝑛 + 1. All four stripes in (c) in-
clude the center dot 

 

Mathematics educators argue that approaches to generalizations drawing on figural 
features fosters algebraic thinking and provides reasons for why a generalization is valid 
(e.g., Hewitt, 2019; Küchemann, 2010). A figural generalization supports students in 
articulating the relationship between a figural pattern and a generalized rule (Yao, 2022). 
However, researchers have documented students’ tendency to generalize figural pattern 
tasks using numerical approaches, for instance by inferring numerical relationships 
between figural pattern exemplars (e.g., Becker & Rivera, 2005; El Mouhayar, 2018; El 
Mouhayar & Jurdak, 2015; Healy & Hoyles, 1999; Lannin, 2005). Several researchers 
provide evidence for the weaknesses of numerical generalizations, where students solve 
figural pattern tasks in a tabular manner (e.g., Hewitt, 2019; Küchemann, 2010; 
Montenegro et al., 2018). For instance, Küchemann (2010) argued against the practice of 
counting the elements in the first exemplars and continue with “no reference to context, 
that is, the nature of the given (…) pattern” (p. 235). He claimed that this practice distances 
students from the search for structure.   

As the literature review will show, there is a lack of knowledge on how to support 
students’ figural approaches in figural pattern generalization tasks. In particular, the 
potential support of dynamic learning environments (DLEs) is not explored. Yeo and 
Webel (2024) describe such dynamic learning environments as digital tools designed to 
support learning, where “dynamic tools can be discrete (…) or continuous” (p. 21). DLEs 
open “new possibilities for visual expression in the process of mathematical reasoning” 
(Healy & Hoyles, 1999, p. 59). DLEs may relate visual and symbolic representations and 
enable discernment of invariants (Leung et al., 2013), and they may provide immediate 
feedback (Ruthven, 2018). Dyrvoll and Bergvall (2023) argue that such learning 
environments foster persistence and exploration. The purpose of our study is to address 
how a DLE may support students’ figural generalization of figural patterns. In this article, 
we present results from a study of pre-service teachers (PSTs) enrolled in the grade 1 to 7 
program using a DLE that facilitates figural approaches. The DLE in focus is the Figural 
Pattern Computer Application, referred to as the FPapp, developed by Author 2. We 
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describe PSTs’ generalization of figural patterns using the FPapp and scrutinize the 
support provided by the FPapp drawing on Duval’s (2006) cognitive theory of semiotic 
representations. Drawing on the results presented in this article, we find reason to 
critically discuss the PSTs’ explanations of their generalizations. Arguably, the FPapp has 
shortcomings as a DLE. By analyzing not only the positive effects of the FPapp, but also 
the effects of its shortcomings, we can identify essential properties of DLEs aimed at 
supporting students’ figural pattern generalization. 

2 Literature review and research question 

2.1 Theoretical framework 

Duval’s (2006) theory of semiotic representations is a cognitive approach to learning. Cog-
nitive approaches focus on how individuals mentally process and organize mathematical 
knowledge. Duval’s theory has proved itself useful for studies of algebraic thinking (e.g., 
Bråting & Kilhamn, 2021; Montenegro et al., 2018; Yao, 2022), and it provides terminol-
ogy well suited for investigations of generalizations of figural patterns. 

In Duval’s (2006) view, mathematics is a unique area of knowledge due to the total 
dependence of its objects to be semiotically represented. A representation is “something 
that stands for something else” (p. 103). Since the representation of a mathematical object 
cannot be compared directly to the object, the learner must infer which properties of the 
representation are mathematically relevant. For instance, the number of dots in each 
exemplar in Figure 1 and the cross-like shapes are relevant properties of ‘The Cross 
Numbers’. However, the absolute distance between the dots is an irrelevant property. 

A semiotic representation system consists of a set of representations of mathematical 
objects (signs) and a set of rules and associations between their signs. The main property 
of a sign is its capacity to be transformed into other signs. A semiotic representation 
system that allows transformations, is called a semiotic register. In this article, the figural 
register refers to the (geometrically) visualized figural pattern. The symbolic register 
refers to the symbolic algebra, and the language register refers to the verbal use of the 
natural language. 

Different registers facilitate different mathematical processes. For instance, 
determining the number of dots in the 125th exemplar of The Cross Numbers using the 
figural register of visualized dots would be a tedious job. Using the symbolic register, 
however, we can multiply 125 with 4 and add 1, quickly concluding that the 125th exemplar 
contains 501 dots. Furthermore, different registers make explicit different properties of 
the same mathematical object. For instance, symbolic descriptions of The Cross Numbers 
do not convey information about its geometrical structure.  

According to Duval (2006), mathematical knowledge is produced through the 
transformation of signs. Transformations that happen within a register are called 
treatments. Some registers exist mainly for the purpose of mathematical processing, with 
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most treatments being procedural. These are called mono-functional registers and are 
exemplified by the symbolic register. Other registers have multiple cognitive functions, 
like imagination, processing, and communication. These are called multifunctional 
registers, and treatments in these registers can rarely be formulated as procedures. In 
discussing sources of incomprehension in mathematics, Duval (2006) makes the point 
that treatments in multifunctional registers are cognitively more complex than treatments 
in monofunctional ones. Figural registers are multifunctional registers, whose complexity 
may be exemplified by students’ struggle to see figures with an awareness of possible sub-
configurations and opportunities for reconfigurations. Figure 2 exemplifies treatments 
conducted on The Cross Numbers, illustrating three different ways of seeing sub-
configurations in a figural pattern. 

Conversions are transformations of representations from one register to another 
register “without changing the objects being denoted” (Duval, 2006, p. 112). For example, 
the stripe containing the center dot and the three rightmost dots in 𝑛𝑛 = 3 in Figure 2, 
converts from the figural register to 𝑛𝑛 + 1 in the symbolic register. Duval argues that 
conversions are cognitively more complex than treatments. To make a conversion, one 
must coordinate (at least) two different registers and recognize the same mathematical 
object represented in two different ways. For instance, a figural generalization includes 
converting the result of a figural treatment of figural pattern exemplars into symbolic 
expressions. Considering The Cross Numbers’ increasing ‘arms’ (Figure 2, 𝑛𝑛 = 2 
exemplar) as mathematical objects, one must recognize how one ‘arm’ in the figural 
register may be represented by the letter 𝑛𝑛 in the symbolic register.   

2.2 Generalization of figural patterns 

Radford and Peirce (2006) articulated an acknowledged description of the cognitive ca-
pabilities involved in making an algebraic generalization of a pattern: “(…) grasping a com-
monality noticed on some elements of a sequence S, being aware that this commonality 
applies to all the terms of S and being able to use it to provide a direct expression of what-
ever term of S” (p. 5). According to Radford (2008), solving figural pattern tasks without 
identifying commonalities does not promote algebraic thinking. He exemplified this with 
naïve induction, where students guess rules and verify them through checking the number 
of dots in one or two exemplars. Furthermore, Radford and Peirce (2006) argued that not 
all symbolization is algebraic. The symbols need to designate indeterminate objects. Alge-
braic generalization rests on a generalization of a local commonality to all the terms of a 
sequence, serving “as a warrant to build expressions of elements of the sequence that re-
main beyond the perceptual field” (Radford, 2010, p. 42).  

Contributions in the past 20 years of research on students’ efforts to generalize figural 
patterns include the research of Rivera and Becker (e.g., 2007, 2008) and El Mouhayar 
and Jurdak (2015, 2016). Rivera and Becker (2008) offered a discussion on the cognitive 
act of ‘grasping’, ‘noticing’, and ‘seeing’ commonalities. In the context of figural patterns, 
they drew on Duval’s (1998) concepts of perceptual and discursive apprehension, where 
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the former involves seeing a figure as a single gestalt and the latter involves seeing a figure 
as a configuration of multiple gestalts. Rivera and Becker (2008) distinguished between 
two ways of generalizing within a discursive apprehension. Taking a constructive 
approach means treating figural patterns as consisting of non-overlapping parts. This is 
illustrated in 𝑛𝑛 = 1 and 𝑛𝑛 = 2 in Figure 2. A deconstructive approach means seeing a 
figural pattern as being constructed of possibly overlapping sub-configurations, as 
illustrated in 𝑛𝑛 = 3 in Figure 2. 

Rivera and Becker (2007) investigated students’ use of numerical and figural features 
in their abductive-inductive approaches to generalize figural patterns. They concluded 
that those who approached the tasks numerically often failed to provide a conceptual 
explanation. Some of these students’ abductions relied on ‘guess-and-check’. On the other 
hand, those who relied on figural features focused on invariant relational structures and 
introduced variables consistently. They were more capable of justifying the viability of 
their generalizations. 

Building on the work of Radford (2008) and Rivera and Becker (2007, 2008), El 
Mouhayar and Jurdak (2015, 2016) and later El Mouhayar (2018) investigated students’ 
generalization approaches. They made a distinction between numerical reasoning 
approaches, where generalizations are inferred from numbers generated from figure 
exemplars, and figural reasoning approaches. The latter is a merger of Rivera and Becker’s 
(2007) ‘figural similarity’, where generalizations are inferred from figural relationships 
between figures, and Küchemann (2010) ‘structural figural’ generalization, where a 
generic case is analyzed. 

Furthermore, El Mouhayar and Jurdak (2015, 2016) documented how generalization 
approaches differ with respect to grade level and types of generalization tasks. Moreover, 
they exemplified how different strategies may be applied in numerical and figural 
reasoning approaches (El Mouhayar & Jurdak, 2016). A recursive strategy in a numerical 
approach involves identifying a numerical difference between consecutive terms and 
reaching the next terms by repeatedly adding this value. In a figural approach, a recursive 
strategy means recognizing the structural growth between consecutive figures and adding 
this to the given exemplar to reach the next figural step. With respect to our study, where 
PSTs were asked to create symbolic generalizations, the functional strategy is most 
relevant. A numerical approach to this strategy means recognizing a rule based on the 
numeric pattern. A figural approach to a functional strategy involves identifying the 
constant and the growing components and relating the growing components to the figural 
step number. 

We extend this review by incorporating two publications that applied Duval’s (2006) 
theory to the study of figural pattern generalization. Firstly, Montenegro et al. (2018) 
classified the students’ actions as they generalized figural patterns using the concepts of 
treatments and conversions. The students’ numerical approaches provided limited 
success. Rather, performing treatments on the original figure, like circling dots as shown 
in Figure 2, provided students with favorable conditions to generalize. Montenegro et al. 
(2018) argued that conducting figural treatments on figural patterns supports the 
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identification of commonalities and “opens the way for conversions between 
representations” (p. 106), which according to Duval (2006) is crucial for mathematical 
learning.  

Secondly, Yao (2022) applied Duval’s (2006) theory and discussed symbolic and 
figural treatments that support students in making use of a pattern to predict further 
behavior. For instance, some symbolic treatments may facilitate the discovery of a visual 
structure. A student may investigate The Cross Numbers (Figure 1) by conducting 
symbolic treatments on the sequence of numbers generated by counting dots in the three 
first exemplars (5, 9, and 13). Finding that 9 − 5 = 4 and 13 − 9 = 4, the student may infer 
that the sequence increases by 4 for each exemplar. Consecutively, a student may look for 
ways that 4 is manifested in the figural register: There are 4 arms, and each increase by 
one dot for each consecutive exemplar. Figural treatments, on the other hand, may provide 
observable figural structures which students may ‘read’ directly into the symbolic register. 
For instance, looking at the figural treatment of 𝑛𝑛 = 2 in Figure 2, students may see 
directly that there are four occurrences of 𝑛𝑛 and a 1 in the center. Without figural 
treatments like circling or shading dots, ‘reading’ figural structures into the symbolic 
register may be more challenging. 

2.3 Dynamic learning environments applied in the generalization of figural 
patterns  

Our literature review identified three studies focusing on DLEs applied in the generaliza-
tion of figural patterns. Healy and Hoyles (1999) analyzed students’ learning of mathe-
matical concepts through computer activities. These included a DLE asking students to 
provide symbolic generalizations of growing matchstick patterns. Analyzing different in-
tegrations of computer activities in learning of mathematics, Healy and Hoyles (1999) pro-
moted software that “involves the visual alongside with the symbolic, that is, in which ac-
tion, visualization, and symbolization are closely interrelated” (p. 83). The study of Pearce 
et al. (2008) concerned the development of a DLE to support students’ generalization. The 
resulting computer program aimed to facilitate structural algebraic reasoning, where stu-
dents could explore the concept of variables. Pearce et al. (2008) presented a pond tiling 
task, asking for the number of 1 ∙ 1 tiles needed to surround a pond of length 𝑙𝑙 and breadth 
𝑏𝑏. Using the DLE, students could “build with 𝑙𝑙 and 𝑏𝑏” and visualize different answers, for 
instance 2𝑙𝑙 + 2𝑏𝑏 + 4 and 2(𝑙𝑙 + 2) + 2𝑏𝑏. Unfortunately, no empirical studies have been 
conducted using this computer program.  

Investigating pre-service mathematics teachers’ technology-aided generalizations, 
Yao and Elia (2021) included two figural pattern tasks. The study focused on reasoning 
types, and Yao and Elia showed relationships between naïve empiricism and numerical 
reasoning on one side and between generic examples and figural reasoning on the other 
side. However, no further description of the students’ work with the figural pattern tasks 
is included in their article. Yao and Elia concluded that even though the students employed 
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the dynamic properties of digital tools to observe and conjecture, the students struggled 
to identify the underlying structure and generalize it to broader contexts.  

2.4 Knowledge gaps and research question 

There is ample evidence for the benefits of figural generalizations of figural patterns and 
for students’ tendency to generalize numerically (e.g., El Mouhayar & Jurdak, 2015; 
Montenegro et al., 2019). Moreover, Yao (2022) identified transformations that facilitate 
figural generalizations, but little is known about how to support students in making such 
transformations. More than 25 years have passed since Healy and Hoyles (1999) con-
cluded that DLEs where “action, visualization, and symbolization are closely interrelated” 
(p. 83) might provide support for figural pattern generalizations. However, published 
studies of DLEs supporting generalization of figural patterns either lack empirical data 
(Pearce et al., 2008) or have not reported on the use of DLE with respect to figural pattern 
tasks (Yao & Elia, 2021).  

In our effort to support students’ figural generalizations of figural patterns, we apply 
the FPapp introduced below. To scrutinize the support provided by this DLE, we use 
Duval’s (2006) framework to analyze the generalization efforts of six pairs of PSTs 
applying the FPapp. We pose the following research question: 

What characterizes the pre-service teachers’ treatments and conversions as they 
use the FPapp to generalize figural patterns in task-based interviews? 

3 A dynamic learning environment for figural generalization 
of figural patterns 

Reviewing teaching practices in algebra, Ellis and Özgür (2024) pointed to the lack of op-
portunities for students to explore and make connections across representations. The 
main idea of the FPapp is to support students in making connections between the figural 
and symbolic registers. This is facilitated through efforts to reduce cognitive complexity 
related to treatments in the figural register and conversions between the figural and the 
symbolic registers. Table 1 is a simplified version of the terminology developed by Monte-
negro et al. (2018), as they applied Duval’s (2006) theory to analyze students’ work with 
figural patterns. The first four transformations are ordered chronologically according to a 
typical solution process when using the FPapp.  The fifth transformation, conversions into 
language, occurs continuously when students collaborate. 
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Table 1.  Transformations conducted by students generalizing and discussing figural pattern 
tasks using the FPapp. *Transformations facilitated by the FPapp 

Transformations Code Operationalized to the context of this study 

Symbolic-figural conver-
sions* 

ScF Converting from a symbolic expression into a shape applied to 
the visualized figural pattern 

Figural treatments* Ft Placing, replacing and removing shapes in the area where figu-
ral patterns are visualized 

Figural-symbolic conver-
sions 

FcS Converting from a visualized figural pattern (including shapes) 
into a symbolic algebra expression 

Symbolic treatments St Symbolic operations (numbers and letters) 

Figural/symbolic-language 
conversions 

FScL Converting from a visualized figural pattern and/or a symbolic 
expression into verbalized language 

 

The interface of the FPapp is shown in Figure 3. It includes a figural pattern task 
(exemplified by The Cross Numbers in Figure 3) and tools to facilitate a symbolic 
generalization. 

Figure 3.  The interface of the FPapp, exemplified by The Cross Numbers 

 

The FPapp utilizes two registers, namely, the symbolic register and the figural register. 
The former appears in two ways. First, there is an empty formula field where users are 
supposed to provide a generalized symbolic expression (Figure 3, bottom right corner). 
This field is initially empty, and the FPapp is designed to determine whether the users’ 
symbolic input is a valid generalized expression of the number of dots in the 𝑛𝑛th figure. 
Second, the symbolic register appears in the choice of shape size, where 𝑛𝑛 − 1, 𝑛𝑛, and 𝑛𝑛 +
1 are available options (Figure 3, bottom center). The shapes, on the other hand, belong 
to the figural register (Figure 3, bottom center). Depending on the task at hand, these 
shapes may be stripes (vertical or horizontal), squares, or triangles. These shapes are 

https://doi.org/10.31129/LUMAT.14.1.2856


Sjaastad & Lorange (2026)                                                                                                                                           10/28 
 

LUMAT Vol 14 No 1 (2026), 2. https://doi.org/10.31129/LUMAT.14.1.2856  

designed to frame dots in the three first exemplars (𝑛𝑛 = 1, 2, 3) of a figural pattern (Figure 
3).  

As indicated by Table 1, the FPapp facilitates two different transformations. Firstly, by 
choosing 𝑛𝑛 − 1, 𝑛𝑛, or 𝑛𝑛 + 1, where 𝑛𝑛 is the default choice, the app conducts a symbolic-
figural conversion. If the user drags a shape (stripe, square, or triangle) into one of the 
three areas containing a figural pattern specimen, the shape automatically attains the 
correct size with respect to the value of 𝑛𝑛. That is; the FPapp dynamically makes symbolic-
figural conversions that provide the corresponding shape size. The range of possible 
horizontal stripes is illustrated in Figure 4. A dashed line framing a dot indicates that the 
dot is not included by the shape, illustrating the divergence from 𝑛𝑛. Thus, an 𝑛𝑛 − 1 stripe 
in the 𝑛𝑛 = 1 area will appear as a dashed circle only (Figure 4). 

Figure 4.  The horizontal 𝑛𝑛 − 1 stripe, 𝑛𝑛 stripe, and 𝑛𝑛 + 1 stripe, as they automatically appear in 
the 𝑛𝑛 = 1, 𝑛𝑛 = 2, and 𝑛𝑛 = 3 areas 

 

Secondly, the FPapp facilitates figural treatments. In this context, figural treatments 
mean grouping and regrouping dots in the FPapp interface. The FPapp supports students 
in covering figural pattern exemplars using different shapes (e.g., stripes, squares, and 
triangles). This figural treatment is flexible in several ways. All shapes can be removed and 
replaced at any time, they may overlap, the user may use different shapes to cover the 
exemplars in 𝑛𝑛 = 1, 𝑛𝑛 = 2, and 𝑛𝑛 = 3, and the user may start over by clicking ‘remove 
shapes’ (Figure 3, top left corner). As apparent in Figure 2, different ways of covering 
figural pattern exemplars make different configurations visually apparent. These may 
assist students in identifying structures of figural patterns and, subsequently, to generalize 
the figural patterns using symbolic expressions. 

While the FPapp conducts the symbolic-figural conversion automatically, the users 
must themselves convert the figural structure into the symbolic register. However, as 
illustrated in Figure 4, the shapes have different appearances, and students may find the 
symbolic expression of a shape by looking at the shape generator (Figure 3, bottom 
center). This reduces the cognitive complexity of the figural-symbolic conversion.  The 
symbolic algebra expression is written in the formula field (Figure 3, lower right corner), 
which is accompanied by a ‘check formula’ button. By clicking this button, the formula 
field turns green if the expression is valid and red if it is invalid. The user may then keep 
treating the figural pattern exemplars or start over by clicking ‘remove shapes’ in the top 
left corner (Figure 3). 

Two of the transformations in Table 1, namely, symbolic treatments and 
figural/symbolic-language conversions are relevant in this study but not integrated in the 
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FPapp. The purpose of not including the opportunity for symbolic treatments is to 
facilitate figural rather than numerical approaches. 

The FPapp contains twelve figural patterns. The Cross Numbers (Figure 1) provides 
an accessible start, where the arms increasing from one figure to the next are readily 
identifiable. The Trapezoid Numbers (Figure 5a) and The Oval Numbers (Figure 5b) 
increase the complexity of identifying the constant and the changing elements. The Chair 
Numbers (Figure 5c) and The Circumference Numbers (Figure 5d) are included as they 
facilitate a variety of solutions. The remaining tasks provide experience with squares and 
triangles as elements in figural pattern tasks. 

Figure 5.  The 𝑛𝑛 = 3 exemplars of The Trapezoid Numbers (a), The Oval Numbers (b), The 
Chair Numbers (c), and The Circumference Numbers (d) 

 

The FPapp offers a limited range of dynamic elements. The figural pattern tasks are 
fixed, the possible shapes and sizes are predefined, and the users cannot manipulate the 
figure exemplars by repositioning dots. This limits the users’ opportunities for exploration 
of the figural patterns. Furthermore, although facilitating figural generalizations, there is 
no guarantee that students using the FPapp engage in figural reasoning. Thus, there is a 
risk that they develop practices that reinforce a procedural mindset.  

4 Methodology 

4.1 Sample, data collection, and analysis 

This study was conducted in Norway, where teacher training for primary and lower sec-
ondary education is a five-year long master’s study. PSTs enroll in programs aimed at 
teaching in either grade 1 to 7 or grade 5 to 10. All PSTs in the former program and all 
PSTs specializing in mathematics in the latter program work with figural pattern general-
izations at some point in their teacher training. They do so to prepare for the compulsory 
nationally provided exam in algebraic thinking, which always includes such tasks, even 
though figural patterns are not mentioned in the 1 to 7 curriculum. The FPapp was devel-
oped by Author 2 to offer all PSTs in Norway a free and digitally accessible tool to improve 
their generalization of figural patterns and, more broadly, their algebraic thinking.  

https://doi.org/10.31129/LUMAT.14.1.2856


Sjaastad & Lorange (2026)                                                                                                                                           12/28 
 

LUMAT Vol 14 No 1 (2026), 2. https://doi.org/10.31129/LUMAT.14.1.2856  

The PSTs in this study are enrolled in the grade 1 to 7 program and attended a 10 
credits mathematics course offered in year 3. At the beginning of the semester, the PSTs 
worked with some figural pattern tasks. The data collection took place three months later. 
It was initiated by Author 2 informing all PSTs in the course about the ongoing research 
on the FPapp. Being informed about the implications of attending the study, the 
opportunity to withdraw, and how data would be stored, analyzed, and presented, 
volunteers provided written consent before attending the study. Ten female and two male 
PSTs volunteered. 

We wanted to capture the cognitive processes involved as PSTs engage with the FPapp. 
However, we judged the data generated from having a PST interacting alone with a 
computer to be insufficient to scrutinize the cognitive processes. We wanted to draw on 
interplay of signs from different registers, exemplified by PSTs simultaneously gesturing, 
talking and treating figures using the FPapp. Thus, we designed a context facilitating 
simultaneous use of language, gestures, typing, and use of computer mouse. The PSTs 
were assigned work in groups of two to stimulate conversation, and the groups were 
provided with only one computer to avoid them from working individually. This interplay 
would support our investigation of the cognitive processes facilitated by the FPapp. 

All six interviews were conducted in the same manner. First, Author 2 would direct 
their attention to one of the figural pattern tasks in the FPapp and ask them to use the 
shapes to describe the structure of the figural pattern and provide a formula. Author 2 
would then remain silent until the PSTs had constructed a symbolic expression validated 
by the ‘check formula’ button in the FPapp. Then, Author 2 would lead a conversation with 
PSTs about their solution using two or more of the questions in Table 2. 

Table 2.  Questions asked by Author 2 in the intermediate discussions 

Q1 Can you write a text to a student who was absent today, explaining the pattern in a way that enables the 
student to infer how many dots there are in each exemplar? 

Q2 Can you explain how the formula relates to the figural pattern? 

Q3 Can you use the stripes to explain the structure of the figural pattern? 

Q4 Can you explain why the formula will be valid for all exemplars, and not only the ones you see here? 

Q5 Can you show that this solution is algebraically equivalent to the previous solutions? 

 

Following the suggestion of Yao (2022), who argued that the inclination to utilize 
structure is nurtured by identifying multiple generalizations, Author 2 then asked the 
PSTs to create another generalization of the same figural pattern. At most, he asked for as 
many as six different ways of generalizing a figural pattern, each time followed by a new 
discussion. These discussions would sometimes include a request to prove algebraic 
equivalence with prior solutions using pen and paper. In practice, this implied that the 
students would use symbolic manipulation to change the new expression into the 
preceding one. 
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The six task-based interviews lasted for an average of 70 minutes. About the first 50 
minutes were spent on the PSTs going back and forth between solving tasks and discussing 
their solutions with Author 2. In the remaining part of the interview, the PSTs solved tasks 
without intermediate discussions with Author 2. In total, the groups created 74 solutions 
(an average of 12) and engaged in discussions with Author 2 after 48 of these (an average 
of 8). For instance, Group 1 first made three equivalent symbolic generalizations of The 
Cross Numbers (Figure 1), before creating four generalizations of The Circumference 
Numbers (Figure 5d) and three generalizations of The Trapezoid Numbers (Figure 5a). 
The choice of figural pattern tasks varied from pair to pair, based on Author 2’s ongoing 
interpretation of the PSTs’ mastery and occasionally on the PSTs’ requests for something 
similar or something more difficult. The data was collected using a video camera capturing 
both the PSTs and their gestures aimed at the computer screen. Their digital activity was 
also captured using a screen recording program. 

4.2 Data analysis 

The process of data analysis started with the authors viewing the video recordings multiple 
times to become familiar with the PSTs’ communication and interaction with the FPapp. 
Then, Author 1 transcribed all six video recordings in full, including relevant gestures and 
digital actions. The PSTs were made anonymous in the transcripts and labelled ‘Student 
1A’, ‘Student 1B’, ‘Student 2A’, etc., according to their respective group number. With the 
transcripts uploaded to a spreadsheet, Author 1 viewed the video recordings and paused 
for each occurrence of a transformation. The respective code (Table 1) was written in the 
column next to the corresponding line in the transcript. For each of the six transcripts, a 
summary was written with respect to the group’s performances of each of the five trans-
formations.  

The next phase of the analysis was to conduct an inductive analysis examining one 
transformation at a time. Author 1 would first read the summary of each group with 
respect to the transformation. Then, all parts of the transcripts where this code had been 
applied were read again. Author 1 took notes while reading and key episodes were 
scrutinized by viewing the video recordings repeatedly. Then, to identify the main 
characteristics of this transformation, Author 1 would reorganize the notes by grouping 
them thematically. For instance, themes that emerged inductively with respect to the 
symbolic-figural conversions were ‘experimental approach’ and ‘interpretation issues’. 
Author 1 then read the reorganized notes again and described the characteristics of the 
PSTs’ performance of this transformation. Finally, both authors revisited the data material 
and reviewed the final text to ensure that it captured the essence of the data material as 
validly as possible. 
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5 Results 

Our research question was What characterizes the pre-service teachers’ treatments and 
conversions as they use the FPapp to generalize figural patterns in task-based inter-
views? We will answer this by presenting the characteristics of the PSTs’ transformations, 
treating one transformation at a time. The presentation will follow the chronologically or-
dered structure suggested in Table 1.  

5.1 Conversions from the symbolic to the figural register 

In many contexts, students are provided with three exemplars of a figural pattern (𝑛𝑛 = 1, 
𝑛𝑛 = 2, and 𝑛𝑛 = 3). They may approach the task figurally by conducting treatments on the 
figures, while students approaching the task numerically might start by converting figures 
into numbers. A unique attribute of the FPapp is the starting point of the students’ work. 
Using the FPapp, the PSTs’ starting point was the choice of shapes and their symbolically 
described sizes (Figure 3, bottom center). The most striking characteristic of the PSTs’ 
symbolic-figural conversions was their inclination to adopt an experimental approach by 
dragging shapes seemingly at random onto the figural pattern exemplars. One indication 
of this approach is the fact that 62 of the 74 solution processes were initiated by dragging 
shapes onto the figures without any prior discussion in the groups about the structure of 
the figures. Among the remaining 12 solution processes, 9 were initiated by PSTs who had 
generated new ideas for figural treatments during prior solution processes. In two in-
stances, a full solution of a figural treatment was described before they started dragging 
shapes. In the final instance, a PST wanted to use an 𝑛𝑛 + 1 stripe saying that she wanted 
to make two shapes overlap, that is, a deconstructive approach (Rivera & Becker, 2008). 

With few exceptions, the first attempt at a solution was created using the default 𝑛𝑛 
sized shape. The PSTs soon realized how processes starting with this shape most often 
would result in valid generalizations. In general, placing a random shape often made a 
structure visually evident, as when the PSTs in Group 2 placed the first 𝑛𝑛 + 1 sized stripe 
on The Cross Numbers (Figure 6). Then, the three remaining 𝑛𝑛 sized ‘arms’ became readily 
identifiable.  
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Figure 6.  Placing an 𝑛𝑛 + 1 stripe on The Cross Numbers (left) makes the three remaining n 
sized ‘arms’ readily identifiable, resulting in the figural treatment shown to the right 

 

A second indication of the PSTs experimental approach were all the instances where 
they were asked for a second or third solution. Most often, rather than looking at the 
figures to identify a new structure, they looked at the shape sizes, pointing out which they 
had used and which they could try next. 

A second characteristic of the PSTs’ symbolic-figural conversions was the initial 
interpretation issues caused by the 𝑛𝑛 − 1 and 𝑛𝑛 + 1 sized shapes. Some of these were 
arguably caused by the digital visualization of these stripes (Figure 4). Outside the FPapp, 
an 𝑛𝑛 − 1 stripe on a figure in 𝑛𝑛 = 3 would be a stripe of size 2. To support the student in 
converting this into 𝑛𝑛 − 1 after the figural treatments, the stripe was designed with a 
dashed line including a third dot, to highlight its relation to the 𝑛𝑛 sized stripe. However, 
some PSTs struggled to interpret the 𝑛𝑛 − 1 stripe correctly, resulting in 13 instances of 
misinterpretations, observed through unproductive figural treatments. Instead of 
accurately describing the 𝑛𝑛 − 1 and 𝑛𝑛 + 1 stripes as containing 𝑛𝑛 − 1 or 𝑛𝑛 + 1 dots, 
respectively, some PSTs described these stripes as “lacking a dot” or “having an extra dot”. 
However, having to experiment with the 𝑛𝑛 − 1 and 𝑛𝑛 + 1 sized shapes to create new 
solutions, the PSTs’ interpretation of these shapes evolved. Within the time span of an 
interview, each group developed a correct interpretation of the 𝑛𝑛 − 1 and 𝑛𝑛 + 1 sized 
shapes. 

5.2 Figural treatments 

The FPapp facilitated effective figural treatments. Shapes were placed, replaced, and dis-
posed of much faster than what is achievable with a pencil and eraser. Initial reluctance to 
have the shapes overlap or to let dots remain uncovered, disappeared during the inter-
views. The most remarkable characteristic of the PSTs’ figural treatments in this respect, 
was the fact that they most often conducted treatments on one exemplar only before writ-
ing a symbolic expression. In the total of 74 solution processes, all three exemplars were 
treated in only 18 instances, 𝑛𝑛 = 2 and 𝑛𝑛 = 3 were treated in 7 instances (exemplified in 
Figure 7), and 𝑛𝑛 = 1 and 𝑛𝑛 = 2 were treated in 3 instances.  
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Figure 7.  Group 4’s figural treatment of The Circumference Numbers. After treating exemplars 
𝑛𝑛 = 2 and 𝑛𝑛 = 3 they wrote the corresponding symbolic expression 2(𝑛𝑛 + 1) + 2𝑛𝑛 − 2 

 

Covering only one specimen is a strategy which often provides valid generalizations, 
but the strategy will occasionally produce invalid generalizations. A generic example 
describes commonalities shared with all specimens. In the case of linearly growing figural 
patterns, this means that you need to be able to conduct the corresponding treatments on 
at least two specimens. Our study reveals two related generalization errors that treating 
one specimen only might cause. 

One generalization error was revealed by Group 2 as they were working on The Balance 
Numbers (Figure 8). Having conducted treatments on 𝑛𝑛 = 2, one single dot remained 
uncovered by a shape. Rather than identifying the dot as a constant term, which would be 
converted to +1, they attempted to cover it with an 𝑛𝑛 − 1 stripe. They exemplify a 
fundamental flaw of treating only one specimen of a figural pattern, namely, risking that 
constant terms might be treated as variables. An inspection of a second exemplar would 
reveal this error. We label this error over-letterfication. 

Figure 8.  Group 2’s attempting to place an 𝑛𝑛 − 1 stripe on a constant term in The Balance 
Numbers 
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We also observed a group almost making the opposite error, namely, under-
letterfication. Conducting figural treatments on 𝑛𝑛 = 2 only (Figure 9), the PSTs in Group 
5 interpreted the uncovered dot as a constant term and suggested a conversion into the 
symbolic expression +1. However, the ‘upper edge’ is a variable increasing by 1 for each 
exemplar. This error was discovered by the students as they were typing their symbolic 
expression into the formula field. 

Figure 9.  Group 5 treating the 𝑛𝑛 = 2 exemplar of The Circumference Numbers, interpreting 
the uncovered dot in the upper edge as a constant element 

 

5.3 Conversions from the figural to the symbolic register 

The main characteristic of the PSTs’ figural-symbolic conversions in this study was their 
ability to look at the shapes in the figurally treated specimen and ‘read’ the corresponding 
symbolic expression. Nowhere in the about seven hours of video recordings did we identify 
a PST who misinterpreted the symbolic label of a stripe. Arguably, the FPapp reduces the 
cognitive demand of this conversion due to the different visualizations of the 𝑛𝑛 − 1, 𝑛𝑛, and 
𝑛𝑛 + 1 shapes, exemplified by the horizontal stripes in Figure 4. Moreover, the symbolic 
expression of each shape’s size is visualized in the FPapp (Figure 3, bottom center).  

While the PSTs successfully converted 𝑛𝑛 − 1, 𝑛𝑛, and 𝑛𝑛 + 1 shapes into corresponding 
symbolic expressions, we note that some PSTs occasionally made valid conversions that 
lacked mathematical efficiency. For instance, Group 1 made three successful solutions 
where the symbolic expressions imitated their counting procedure. For instance, they 
covered The Trapezoid Numbers (Figure 10) with two 𝑛𝑛 + 1 stripes and left one dot 
untreated. This was not converted into 2(𝑛𝑛 + 1) + 1, but 2(𝑛𝑛 + 1) − 2 + 3. We suggest that 
they interpreted the 𝑛𝑛 + 1 stripes as stripes with ‘one dot too many’, which they had to 
subtract. Subsequently, they added the subtracted dots in the next term (+3). 
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Figure 10.  Group 1’s treatment of The Trapezoid Numbers using two 𝑛𝑛 + 1 stripes 

 

A second characteristic of these PSTs’ figural-symbolic conversions was their 
immediate identification of invalid symbolic expressions facilitated by the ‘check formula’ 
button. Having typed a symbolic expression, the PSTs used this button by default. They 
were immediately informed if their symbolic expression was invalid, causing them to 
reevaluate either the figural-symbolic conversion or the preceding figural treatments. 
Indeed, this feature might potentially contribute to a ‘guess-and-check’ strategy. Although 
this strategy might be useful in mathematical problem solving, we do not want students 
to guess, check, and move on without engaging in algebraic thinking. Students might 
conduct arbitrary figural treatments on one specimen and succeed in making the figural-
symbolic conversions. A verification of their formula may in such instances cause them to 
proceed to the next task without having engaged properly in the search for commonalities. 
However, one benefit of this button was evident in our data. Whenever a formula was 
labelled invalid, the PSTs remained in a productive struggle: They either discussed their 
figural treatment or their figural-symbolic conversion critically (recorded 14 times) or 
made a new attempt (recorded 1 time). Without this feature, some might have settled for 
invalid generalizations and stopped further investigations of the figural pattern. 

5.4 Symbolic treatments 

The most prominent characteristic of the PSTs’ symbolic treatments using the FPapp was 
the absence of numerical approaches. Occasionally, dots were counted in the discussion 
an idea, but no solutions were derived from counting dots in consecutive exemplars. Ra-
ther, solutions depended on treatments of symbolic expressions converted from figural 
approaches as they typed a formula in the formula field.  

The PSTs were asked to create multiple solutions to some of the figural patterns. In 
intermediate discussions, Author 2 would ask them to establish algebraic equivalence with 
prior solutions (Table 2, Q5). Unexpectedly, a second characteristic of the PST’s symbolic 
treatments was their inclination to depend on the establishment of algebraic equivalence 
to validate new ideas and solutions (recorded 7 times). This treatment was conducted with 
pen and paper. Five of the six groups made at some point use of one or more symbolic 
treatments to inspect algebraic equivalence with an already validated answer while solving 
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a task. Most often, it was used to validate suggestions before writing them into the formula 
field. Group 5 and Group 6 also used symbolic treatments to falsify suggestions. On one 
occasion, Group 6 took full advantage of the insight that all new solutions needed to be 
equivalent with the first solution. Working towards a fourth solution to The Circumference 
Numbers (Figure 5d), Student 6A initiated their work by saying that “you need to end up 
with 4𝑛𝑛, so you can’t have more than four such things”, referring to the number of stripes 
included in a solution. In the subsequent conversation with the teacher, he asked them to 
show that their fourth solution, 4(𝑛𝑛 + 1) − 4, was algebraically equivalent with 4𝑛𝑛. Having 
conducted the symbolic treatment on pen and paper, the PSTs were still looking down at 
the paper: 

Yes. It results to 4𝑛𝑛. (Student 6A) 
Because they cancel out [referring to 4 ∙ (+1) − 4]. (Student 6B ) 

The teacher then asked the PSTs to describe the structure of The Circumference 
Numbers in a fifth way. Student 6B kept looking at the formula field and responded within 
two seconds: 

Yes, we can. Then we’ll just do the same [points at 4(𝑛𝑛 + 1) − 4 still visible in 
the formula field]. Four 𝑛𝑛 minus one plus four. (Student 6B) 

The solution suggested by Student 6B was constructed without any explicit reference 
to the figural pattern or figural commonalities. Knowing that any valid solution needs to 
be equivalent to 4𝑛𝑛, she inferred this solution purely through symbolic treatment of 4(𝑛𝑛 +
1) − 4 into 4(𝑛𝑛 − 1) + 4. We see the potential value in performing symbolic treatments on 
verified solutions to arrive at a new formula. It may help students recognize the 
mathematical coherence involved in these symbolic treatments (“symbolic treatments do 
not alter the value”) and in these symbolic-figural conversions (“other symbolic 
expressions convert into other figural generalizations”). However, a symbolic-figural 
conversion must be conducted for it to be a figural generalization. 

5.5 Conversions from the figural and symbolic registers to the language 
register 

The results concerning figural/symbolic-language conversions draw mainly on data from 
the 48 intermediate discussions, where Author 2 would pose two or three of the questions 
in Table 2. The PSTs’ answers and descriptions rarely concerned either the figural or the 
symbolic register. Most often, their conversions to the language register included both the 
figural shapes and symbolic terms. 

The first characteristic of the PSTs’ figural/symbolic-language conversions was how 
they tended to respond to questions about the figural patterns’ structures. Most often, they 
merely listed the shapes used in the figural treatment of a specimen of the figural pattern, 
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stating their symbolic expressions. This was the most common response to any of the first 
three questions in Table 2. Exemplifying this, Group 3 had just created the symbolic 
expression 3𝑛𝑛 + (𝑛𝑛 + 1) in generalizing The Cross Numbers (respectively to the 
configuration shown in Figure 2 for 𝑛𝑛 = 1). Author 2 asked them to use the shapes to 
describe the structure of The Cross Numbers. Student 3B points at the 𝑛𝑛 = 3 exemplar: 

In each arm, there are three dots corresponding to the cross number 𝑛𝑛, which 
is 3. But in this [points at the 𝑛𝑛 + 1 stripe] which is longer, we have added 1. 
Then you treat that one in a separate term. (Student 3B) 

Here, Student 3B answers a question about structure by listing shapes and stating how 
they convert to the symbolic register. The geometrical shape of the figural pattern and any 
development between exemplars, which would validate the generalization, remain 
undescribed. The answer of Student 3B presented here is representative of the PST’s 
answers and descriptions. Rarely would a PST include any reference to the geometrical 
structure or suggest that a certain collection of shapes would be the same irrespective of 
which exemplar the PST was treating. Exemplifying a rare exception, Student 1A described 
their first solution to The Cross Numbers (Figure 1): “It’s kind of an addition sign, (…) the 
figure is shaped like an addition sign. (…) It is an addition sign with four stripes plus one”. 
Conclusively, the most prominent characteristic of the PSTs’ figural/symbolic-language 
conversions, was how figural patterns were described as sets of (randomly ordered) 
shapes.  

Implied above, the second characteristic of the PSTs’ conversions into the language 
register was the lack of attention to how the patterns develop from 𝑛𝑛 = 1 to 𝑛𝑛 = 2 and from 
𝑛𝑛 = 2 to 𝑛𝑛 = 3. This development is the foundation for generalization statements in this 
context. Only when asked specifically (Table 2, Q4), they included such descriptions and 
arguments. Notably, this question was added to the interview guide after the first 
interview, due to the lack of proper generalization arguments in Group 1. The only 
generalization statement provided in Group 6 was a student who made the following 
remark about The Circumference Numbers: “You can think of n as arms, and irrespective 
of which [figure] it is, it is four arms with the (…) unknown, so it will always be four 
different arms”. Similarly, the students in Group 3 and Group 5 lacked arguments for the 
generality of their symbolic expressions.  

Group 4 was the only group where questions of generality were tackled from the 
outset. They started by referring to the pattern and argued that the shapes increased by 
one for each new specimen. For instance, having conducted figural treatments on 𝑛𝑛 = 2 
exemplar of The Chair Numbers (Figure 11), Student 4A provided the following argument 
for 3𝑛𝑛 + (𝑛𝑛 + 1) being a valid generalization: 
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We see that in each figure, it increases with the same amount, that is, from 1 
to 2 and from 2 to 3 there is a constant increase. So, in number 3, the 𝑛𝑛 will 
be 3 dots (…) and the same will be true in figure 4, then it will be 4 in 𝑛𝑛 here 
[points at the ‘back’ of the chair in the 𝑛𝑛 = 3 exemplar], and 4 in 𝑛𝑛 here 
[points at the left ‘leg’ of the 𝑛𝑛 = 3 chair] and 4 in 𝑛𝑛 here [points at the ‘seat’ 
of the 𝑛𝑛 = 3 chair], and then you can still use [points at the right ‘leg’ of the 
𝑛𝑛 = 3 chair] that 𝑛𝑛 + 1 stripe [points at the 𝑛𝑛 + 1 stripe in the 𝑛𝑛 = 2 chair]. 
(Student 4A) 

Figure 11.  Group 4’s treatment of The Chair Numbers. 

 

6 Discussion 

Now, we will comment on the results of the five transformations involved in the task-based 
interviews. Again, we follow the order provided by Table 1. Subsequently, we discuss es-
sential insights gained about DLEs aimed at supporting figural generalization of figural 
patterns.  

6.1 Symbolic-figural conversions 

Characterizing the PSTs’ initial symbolic-figural conversions was the adoption of an ex-
perimental approach. Many solution processes were initiated by the seemingly random 
dragging of an initial shape onto a figural pattern exemplar. Figure 6 exemplifies the effect 
of an initial placement of a shape, where placing the first shape reveals a structure. Here, 
we argue that this approach is more likely to happen in a DLE like the FPapp than using 
pen and paper. Firstly, the FPapp limits the number of possibilities by offering relevant 
shapes and sizes only. Secondly, the PSTs know that they easily can remove and replace 
shapes. These two factors combined lower the threshold for taking a first experimental 
action. It is less likely that PSTs in a pen-and-paper environment would start drawing ran-
dom shapes on the figure exemplars. Thus, the FPapp restricts its users, making them 
apply certain shapes. This might support students in experimenting with the figural pat-
terns.  
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6.2 Figural treatments 

Montenegro et al. (2018) argued that conversions between different registers are facili-
tated by figural treatments that support the identification of commonalities and make 
them visually available. Our study provides support to the claim that figural treatments 
facilitate the identification of commonalities. The PSTs applying the FPapp, which was 
designed to reduce the cognitive complexity of figural treatments, became highly effective 
in treating figures to visualize different structures. They used both constructive and de-
constructive approaches (Rivera & Becker, 2008). However, with respect to their figural 
treatments, we observed that in 46 of the 74 instances they only treated one figural pattern 
exemplar before converting to the symbolic register, risking over- and under-letterfica-
tion. Indeed, El Mouhayar and Jurdak (2016) considered generic examples as figural gen-
eralization. However, even in cases of linearly growing figural patterns, the validity of a 
generic example rests on identification of commonalities shared with all specimens. We 
will comment on this later in our discussion. 

6.3 Figural-symbolic conversions 

The PSTs in our study did not struggle in making conversions from the figural to the sym-
bolic register. We argue that this was partly due to how the FPapp visualizes the common-
alities of a figural pattern (as exemplified in Figure 2). Moreover, the FPapp offers a figu-
ral-symbolic conversion of each commonality (as exemplified in Figure 4). According to 
Yao (2022), figural treatments may facilitate the ‘reading’ of an element into a symbolic 
register. In our study, considering the PSTs’ efficient conversions from the figural register 
into the symbolic register, it seemed like they were able to ‘read’ the commonalities di-
rectly into symbols. 

6.4 Symbolic treatments 

Numerical approaches to generalization involve symbolic treatments. Characterizing the 
PSTs’ generalizations efforts was the absence of such approaches. However, symbolic 
treatments were frequently conducted. The PSTs used algebraic equivalence with known 
solutions as a guide in searching for new solutions. Thus, like Yao (2022), we identified 
symbolic treatments that are useful for generalization of figural patterns. In fact, our study 
provides new examples of how symbolic treatments may facilitate figural pattern general-
ization. The PSTs in our study conducted symbolic treatments on ongoing solution at-
tempts to establish algebraic equivalence with symbolic expressions of validated solutions. 
Moreover, we observed an instance where a symbolic generalization of a figural pattern 
was derived directly from a validated expression through symbolic treatments (Student 
6B). Thus, we add to the research field some new ‘useful’ symbolic treatments. Notably, 
this presupposes an interpretation of Yao’s (2022) term ‘useful’ as useful to derive valid 
generalizations, and not necessarily useful to engage in the search for commonalities. 
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Taking Küchemann’s (2010) perspective, where the main reason for solving figural pat-
tern tasks is the attention to the figural register, algebraic thinking plays a limited role in 
deriving new solutions directly through symbolic treatments. Still, in an initial phase of 
engagement with figural pattern tasks, symbolic manipulations of validated solutions 
might be valuable. Students may discover relations between the two registers, as exempli-
fied by Student 6B. 

6.5 Figural-language conversions and symbolic-language conversions 

The PSTs described figural patterns by listing shapes and their corresponding symbolic 
expressions. The patterns were most often presented as sets of decontextualized shapes 
rather than describing the patterns’ figural properties and structural development from 
𝑛𝑛 = 1 to 𝑛𝑛 = 3. Most PSTs in this study had a limited repertoire when converting a gener-
alized figural pattern into natural language. While DLEs may support students’ generali-
zations, Yao and Elia (2021) concluded that DLEs may provide students with examples to 
help them generalize, but that this not necessarily enables them to generalize in terms of 
general structures. Similarly, the PSTs in our study were supported by a DLE to create 
generalized symbolic expressions, but they struggled to describe the structure of the figu-
ral patterns verbally. Emerging from our results is a critical question: Did the PSTs in our 
study experience figural pattern tasks as a ‘route to algebra’, as Radford (2008) suggested 
they could? Mason (1996) considered generalization acts as the basis for algebraic think-
ing. Although the PSTs conducted multiple successful generalizations acts, the many cases 
of imprecise and flawed verbal descriptions of these generalizations cause concern about 
the algebraic thinking involved. Indeed, the PSTs avoided the numerical approaches crit-
icized by many researchers as limiting the algebraic thinking involved (e.g., Hewitt, 2019; 
Montenegro et al., 2018). However, our observations indicate that although the PSTs in 
this study avoided the approach to figural patterns as a set of decontextualized numbers 
(Küchemann, 2010), some PSTs in essence approached a figural pattern as a set of decon-
textualized shapes. While the PSTs arguably decomposed figural pattern exemplars (El 
Mouhayar & Jurdak, 2016), recognized figures as configurations of multiple gestalts 
(Duval, 1998) and applied both constructive and deconstructive approaches in doing so 
(Rivera & Becker, 2008), they still struggled to articulate their generalizations. This is un-
typical for students who apply figural approaches (Yao, 2022). Thus, we hypothesize that 
some PSTs in this study developed a procedural way of generalizing figural pattern tasks 
using the FPapp. They developed an efficient procedure to solve the task, but they may 
have missed the underlying mathematical structure (Yao & Elia, 2021). The presence of 
this procedure is indicated by the many instances of PSTs treating only one exemplar of 
the figural pattern, risking errors like over- and under-letterfication. It contrasts with a 
practice of detecting sameness and difference, which Mason (1996) presented as hallmark 
for algebraic thinking. 
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6.6 General discussion, implications, and limitations 

The FPapp exemplifies software “in which action, visualization, and symbolization are 
closely interrelated” (Healy & Hoyles, 1999, p. 83). Students may drag shapes, where the 
action of dragging a shape into areas representing different values of 𝑛𝑛 cause an immediate 
change of the size of the shape, and where the appearance of each shape corresponds to a 
particular symbolic expression (𝑛𝑛 − 1, 𝑛𝑛, or 𝑛𝑛 + 1). As part of a learning activity where 
looking for structure is decisive (Küchemann, 2010), the effect of the FPapp exemplifies 
the potential of dynamic (Healy & Hoyles, 1999) and interactive software (Dyrvold & 
Bergvall, 2023). Like the DLE presented by Pearce et al. (2008), which offered many sim-
ilar dynamic properties relating action, visualization, and symbolization, the FPapp sup-
ports students’ algebraic generalizing through a reduction in cognitive complexity. Our 
study adds empirical support to the assumption that DLEs relating action, visualization, 
and symbolization may reduce the cognitive complexity of creating figural generalizations. 

While the design of the FPapp arguably supported PSTs to derive multiple valid figural 
pattern generalizations, the results in this study indicate that some PSTs developed 
strategies that constrained their algebraic thinking: First placing a predesigned shape 
randomly on a figure exemplar, then placing shapes to circle the remaining dots before 
typing in the symbolic expressions of these shapes and clicking ‘check formula’. If such a 
formula is verified, the student might proceed without “grasping a commonality” (Radford 
& Peirce, 2006, p. 5) in the figural pattern. This means that they may conduct figural 
treatments implying a discursive apprehension of the figural pattern exemplar (Rivera & 
Becker, 2008) and still not engage in the act of ‘seeing’ commonalities. Rivera and Becker 
(2007) described how students would generate numbers from the figural patterns and use 
these to create guess-and-check abductions. One might draw parallels between this 
approach and the PSTs in our study placing random shapes on a single figural pattern 
exemplar and converting the shapes into symbolic expressions. In both instances, 
students may struggle to explain why the generalization is true. 

The results in this study have implications for development of the FPapp. While some 
properties of the FPapp enable users to develop such a superficial procedure, the same 
properties may also serve valuable purposes. Without the predesigned shapes, some 
students may struggle to initiate figural treatments. The dynamically changing shape sizes 
reduce the cognitive effort of interpreting how a shape looks on a particular figure 
exemplar, and negative responses from clicking ‘check formula’ may keep students in 
productive struggle. Still, the FPapp may be developed to counteract the observed negative 
effects. First, to emphasize the figural pattern exemplars’ commonalities, the FPapp may 
demand that the user treats all three exemplars with a shape, before allowing the user to 
add another shape to an exemplar. This way, the user is nudged to discover the figural 
relationship between exemplars, promoted by Rivera and Becker (2007) as ‘figural 
similarity’. Furthermore, the FPapp may not allow using the ‘check formula’ button before 
all three exemplars are treated similarly. Second, while the FPapp facilitates a functional 
strategy with a figural approach, where shapes are automatically related to the figural step 
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number (El Mouhayar & Jurdak, 2016), a DLE may draw attention to the structural growth 
by facilitating a recursive strategy. One way of attaining this would be to enable the 
construction of the 𝑛𝑛 = 4 exemplar, where users can construct it by marking dots in a fine-
meshed grid. If such a property also encompassed the 𝑛𝑛 = 1, 2 and 3 areas, users could 
apply the strategy of reconfiguring the exemplars. Moreover, the functionality of marking 
dots in a grid may be extended to enable users to construct their own figural patterns.    

The methodological design of this study implies some limitations. As the data 
collection involves only twelve PSTs, the results and discussions in this study regard a 
limited population in a confined context. Thus, statements about their performance 
should not be generalized to the population of Norwegian PSTs, and the 
representativeness of the characteristics of their transformations is still unknown. 
Furthermore, we have only analyzed observations and discussions from the PSTs’ very 
first encounter with the FPapp. The long-term effect of the interaction with the FPapp, 
and the effect of more extensive use, is not considered here. 

The PSTs’ interactions with the FPapp took place in the context of task-based 
interviews, where they worked in pairs and a researcher was present. Thus, data collection 
biases include group dynamics, the collaborative discourse, and the presence of Author 2. 
The cognitive analysis conducted in this study does not take these factors into account. 
Future analyses might address how such factors play roles in students’ reasoning 
processes facilitated by the FPapp. 

6.7 Conclusions 

In this study, we have investigated how we can support students’ efforts to create figural 
generalizations of figural patterns using a DLE. Drawing on video recordings of PSTs solv-
ing such tasks using a figural pattern DLE, we conclude that the PSTs effectively con-
structed multiple valid symbolic generalizations. We ascribe this success to the ways that 
the DLE reduced the cognitive complexity of the transformations involved (Duval, 2006). 
The PSTs adopted experimental approaches, developed strategies for figural treatments, 
converted these to the symbolic register, and conducted symbolic treatments along the 
way to search for equivalence with validated solutions. Numerical approaches were ab-
sent. 

Secondly, we demonstrate that students may apply a DLE to create valid symbolic 
generalizations and still reveal shortcomings in their developing algebraic thinking. Some 
of the PSTs in our study employed the FPapp to develop a procedure where they created 
valid symbolic expressions without necessarily searching for commonalities or engaging 
in algebraic thinking. We conclude that although DLEs may facilitate students’ figural 
approaches to generalization of figural patterns, students may utilize DLEs in ways that 
hinder algebraic thinking. DLEs, exemplified by the FPapp in this study, benefit from 
being scrutinized to uncover shortcomings and unintended use. This may result in 
improvement of the DLEs and an increased attention to practices students develop 
through their interaction with DLEs. 
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We encourage future research on the treatments and conversions involved in 
generalization of figural patterns. Valuable contributions to the research on DLEs and 
figural pattern generalization include scrutinizing attempts to treat the shortcomings 
discussed in this article. Moreover, we encourage research on the effects of more extensive 
use of such DLEs.  
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