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Abstract: Computational thinking (CT) as a problem-solving skill has been argued to be an 
essential skill for all learners. Accordingly, there have been efforts to formalize and operationalize 
CT within school curricula in various countries. In primary schools, students often develop CT 
through unplugged activities and visual programming activities. However, in this study, we 
investigated the use of mathematical software with which students typed in commands (codes) to 
construct artistic artifacts. Educational Design Research (EDR) has guided the development of 
our task. We attempted to utilize technology to support students’ problem-solving skills and 
creativity by developing a GeoGebra-based Math+CT task infusing arts. Fifteen Grade 5 primary 
school students worked on a task to construct a mandala (Hinduism-Buddhism sacred 
geometrical figures) involving mathematical concepts. Data, in the form of students’ GeoGebra 
(i.e., “ggb”) files and screen video recordings, were collected and then analyzed using a content 
analysis method. Findings revealed that our designed task had promoted students’ different 
problem-solving strategies while working with technology. Additionally, most students did not 
encounter serious problems in working with GeoGebra commands, and students’ computational 
thinking skills were supported as a result of engagement with our activities. 
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1 Introduction  

Wing (2006) defined computational thinking (CT) as problem-solving skills used to 
develop solutions, with or without the help of an information-processing agent. 
Furthermore, CT is regarded as an essential skill for all learners (Wing, 2006), and some 
countries and institutions have thus attempted to formalize and operationalize CT in their 
school curricula (Bocconi et al., 2016, 2022). Since this skill is argued to be relevant and 
essential for 21st century living, it must therefore be explored deeply and continually 
throughout the different levels of one’s formal education (Mohaghegh & Mccauley, 2016). 

Bocconi et al. (2016) have highlighted several European countries in which education 
policymakers have tried to incorporate CT as a compulsory element in primary school 
learning. This is in line with what Wing (2006) argued that CT should be taught as early 
as possible. A recent study by Ye et al. (2023) found that research on the integration of CT 
in primary schools, especially in mathematics lessons, constituted a significant portion of 
current studies. Additionally, Chan et al. (2022) in their literature studies have provided 
some insights on how tools and approaches have been utilized, which could help to 
consider the suitable methods for primary school students. However, Nordby et al. (2022) 
with their literature review found the necessity to focus on a process-oriented approach, 
and this approach needs more investigations. We propose that a process-oriented 
approach allows researchers to operate in either a plugged or unplugged mode of delivery. 

Polat and Yilmaz (2022) compared primary school students engaging with plugged 
(i.e., digital, software-based) activities versus comparable unplugged (non-digital-based) 
CT activities and found that academic achievement differed among groups, with higher 
results achieved by those students who participated in the unplugged activities. They 
further concluded that unplugged and plugged activities can both enhance students’ CT 
skills and academic achievement. However, working with plugged activities, especially 
textual programming, can involve unique challenges for both teachers and young learners 
(Resnick, 2012; Resnick et al., 2009), which underscores the need of carefully selecting 
and designing activities appropriate for primary school students. 

Using both plugged and unplugged delivery mode methods, teachers could integrate 
CT into various school subjects (Wing, 2006), specifically within mathematics lessons. Ye 
et al. (2023) conducted a systematic literature review on the integration of CT in 
mathematics education and reported that CT and mathematics can be successfully co-
developed. Based on this finding, we developed Math+CT lessons to support students’ CT 
development while learning mathematics (Yunianto, Sami El-Kasti, et al., 2024). The 
lessons were first implemented with junior high school students (aged 12–15 years), 
incorporating GeoGebra commands to facilitate the construction of visual arts and 
develop creativity (Yunianto, Cahyono, et al., 2024). 

Encouraged by these results, we adapted one of Math+CT tasks for primary school 
students, hypothesizing that this task could support their problem-solving skills, 
creativity, and CT development. GeoGebra offers a dual role in this context—not only as 
an instructional tool but also as a means model and to visualize mathematical ideas 
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(Ziatdinov & Valles, 2022). We were intrigued to know the results of primary school 
students working on our Math+CT task to construct a visual art. The following research 
questions guide our investigation: 

 
• RQ1: How do primary school students approach the plugged CT activities 

utilizing GeoGebra commands for the first time? 
• RQ2: How do CT skills emerge in a Math+CT task involving primary school 

students? 

2 Literature review  

Initially, Papert (1980) introduced the term “computational thinking” (CT) as a way to 
access knowledge by interacting with computers. Several decades later, Wing (2006) 
redefined CT as problem-solving skills that are required to formulate solutions, with or 
without the help of an information-processing agent. Wing’s (2006) CT definition is 
frequently cited by researchers (Irawan et al., 2024). However, Broley et al. (2023) argued 
that scholars might neglect the essence of the initial CT definition by Papert (1980). 
Therefore, Lodi & Martini (2021) proposed that researchers maintain core ideas from both 
Papert’s and Wing’s CT definitions.  

In line with Wing (2006), Grover and Pea (2013) also formulated CT as a mental 
process to support students to formulate and express solutions that are executable by 
computational methods. This definition is also in line with the problem-solving 
conceptualization presented by Polya (1945), and by Schoenfeld (1985), to solve problems 
in a systematic manner. A recent study by Wu et al. (2024) revealed that CT components 
are employed in problem-solving. Moreover, Maharani et al. (2019) have noted how CT 
components support Polya’s problem-solving steps (i.e., 1. Understanding the Problem, 2. 
Devising a Plan, 3 Carrying Out the Plan, and 4. Looking Back) within a mathematics 
lesson. It seems it is not surprising, since Sneider et al. (2014) had previously presented 
the intersection of CT and mathematical thinking, which share some common skills such 
as problem-solving. CT components that support problem-solving can be carried out with 
or without digital tools (see Wu et al., 2024). Given our working definition of CT as 
‘problem-solving within a digital environment,’ we further examine how problem-solving 
is specifically supported with technology. 

The use of technology has influenced students’ problem-solving skills (Alsarayreh, 
2023). Olsher et al. (2023) have pointed out that problem-solving has been used with 
technology specifically for the purpose of conjecturing. They utilized dynamic geometry 
software (DGS) for fostering students’ conjecturing skills by investigating draggable 
points on a quadrilateral that formed a unique arrangement. Sinclair (2001) investigated 
the color calculator for students to manipulate fractions represented in a grid. This activity 
was shown to promote problem-solving skills and to encourage students to pose questions. 
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Similarly, Dakers (2024) argues for a form of problem-solving in which the solution does 
not yet exist so that students become more fully engaged, creative, and experimental.  

Based on literature review, and for the sake of consistency throughout our study, we 
have considered CT as involving both the problem-solving skills that are required to 
formulate solutions—with or without the assistance of information-processing agents—as 
well as the accessing of knowledge through interaction with processing agents. 
Furthermore, a CT definition needs to be operationalized in order to make it more fully 
implementable within school settings. Several scholars have described this 
operationalization in terms of specific CT components relating to their own work (Bocconi 
et al., 2016). For example, Brennan and Resnick (2012) proposed the following CT 
components: computational concepts, computational practices, and computational 
perspectives. Zhong et al. (2016) and Shute et al. (2017) further adapted the Brennan and 
Resnick (2012) CT framework by adding flexibility to the grade levels and for non-
computer science subjects. Another CT framework for science and mathematics education 
by Weintrop et al. (2016) was built upon by Shute et al. (2017). Likewise, by following the 
development of a previous framework, our Math+CT lessons were guided by the CT 
framework of Shute et al. (2017). 

The Shute et al’s. (2017) CT framework consists of six facets, namely, decomposition, 
abstraction, algorithm, debugging, iteration, and generalization. Decomposition deals 
with decomposing the problem into smaller-related problems to be solved. Abstraction 
focuses on accessing essential information and eliminating any redundant information. 
The algorithm requires that one develop steps to solve the problem. Debugging involves 
the identification of errors within the algorithm and, hence, fixing them. Iteration denotes 
the process whereby actions need to be repeated in order to arrive at the ideal solution(s). 
Finally, generalization involves the application of CT skills within different contexts or 
areas of investigation. This framework was incorporated into the Math+CT lessons by 
Yunianto, Sami El-Kasti, et al. (2024) and Yunianto, Cahyono, et al. (2024) and their 
results showed that some students could successfully develop and implement CT skills 
relating to mathematics concepts. 

Integrating CT into mathematics lessons in primary schools has become more 
predominant in recent years (Ye et al., 2023). This is in line with Wings’s (2006) proposal 
to introduce CT as early as possible to children. Working with young learners, Papert 
(1980) introduced “Turtle Geometry” for the development of CT skills in schools. He found 
that certain challenges relating to textual programming, or syntax, were encountered by 
teachers and students who ultimately felt uncomfortable with the tool. Resnick et al. 
(2009) developed a block programming software entitled Scratch designed to support 
student coding via a fun and easy-to-use interface. 

The approach where the CT is introduced through computer programming belongs to 
the plugged CT mode of delivery. This mode uses computers and similar digital devices 
for students to learn CT skills (Hermans & Aivaloglou, 2017). Using “Turtle Geometry” 
that has been used by Papert (1980) or similar tools belongs to plugged-mode CT 
activities. Dakers (2024) defined two different problems for students while engaging 

https://doi.org/10.31129/LUMAT.13.2.2547


Yunianto et al. (2025)                                                                                                                                                    5/32 
 

LUMAT Vol 13 No 2 (2025), 1. https://doi.org/10.31129/LUMAT.13.2.2547 

technology, namely, problems of embodied applied problem solving and problems of 
virtual creative problem solving. The latter is like Papert’s (1980) idea to make students 
construct knowledge by interacting with a computer where the interference of the adults 
is limited. The teaching and learning with problems of virtual creative problem-solving 
poses challenges to implement (Dakers, 2024) and we believe this approach needs more 
examples and investigations.  

Students can benefit from plugged, unplugged, or a combination of both modes of 
learning, as we can see from studies conducted by Rijke et al. (2018), van Borkulo et al. 
(2021), and Chytas et al. (2024). Primary school teachers who supported students’ CT 
skills by using a plugged approach saw similar benefits to students using an unplugged 
approach (Polat & Yilmaz, 2022). In this paper, we reported on students who engaged with 
plugged-mode activities in the Math+CT lesson using GeoGebra software to work with 
textual programming language (i.e., GeoGebra commands). 

GeoGebra is free mathematics software that has powerful features for geometry and 
algebra topics (www.geogebra.org). van Borkulo et al. (2021) and Chytas et al. (2024) have 
utilized GeoGebra for supporting students’ CT skills (i.e., algorithmic thinking and data 
practices) while learning mathematics. Yunianto, Sami El-Kasti, et al. (2024) also utilized 
GeoGebra-based Math+CT lessons, which were shown to support students’ algorithmic, 
debugging, and other related skills. These previous studies were conducted with junior 
and high school students, and thus more research is arguably needed to explore the 
implementation of such strategies in primary school. In this paper, we investigated the 
implementation of a GeoGebra-based Math+CT task within a primary school context 
wherein students experienced a rich integration of mathematics, technology, and visual 
arts. The use of arts and cultures as contexts in CT has been developed in some previous 
studies (e.g., Putra et al., 2022), and it has the potential to increase students’ engagement 
in learning CT. 

3 Theoretical framework  

This study is informed by four related theorical perspectives: constructionism (Papert, 
1980), “half-baked” artifacts (Kynigos, 2007), technological problem-solving (Morrison-
Love, 2021), and problem-solving in digital environments (Dakers, 2024). 

Papert (1980) expanded Piaget’s constructivism theory into constructionism, 
emphasizing learning through creations or constructions. This theory posits that 
computing tools function as objects-to-think-with (Papert, 1980), allowing students to 
enhance their ideas by engaging in designs and manipulations. Papert (198o) proposed 
the constructionism learning theory while developing his “Turtle Geometry” software 
designed to enhance computational thinking skills. His ideas involved students interacting 
with a computer to construct artifacts, thereby learning and mastering key computational 
thinking concepts. Additionally, he proposed three principles in constructionist learning, 
namely, engagement in the activity, ownership of one’s ideas and learning style, and 
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exposure. The engagement principle means that students are actively constructing or 
reconstructing digital artifacts. The second principle, ownership, means that students use 
their own ideas and strategies to construct these artifacts. The exposure principle involves 
students presenting their ideas to their peers, working with others, and demonstrating 
how they created their objects. 

In our lessons, students worked with GeoGebra to construct geometrical objects 
through various GeoGebra commands. This resembles the constructions of mathematical 
objects carried out by Papert (1980) with “Turtle Geometry.” Students were shown a brief 
video regarding the history and use of mandalas, but no sample mandala creations were 
shared with them prior to the design activity. Thus, with their own unique ideas and 
imagination, students were directed to create individual mandala designs using GeoGebra 
commands. The use of different colors, sizes, and number of objects were permitted. 
Students did not formally present their works to peers, however, they were given the 
opportunity to walk around at the end of the session to see their peers’ creations. 

Kynigos (2007) introduced the concept of a “half-baked artifact,” which served as an 
additional guiding principle in this investigation. His concept was to allow students to 
modify and enhance incomplete artifacts in a manner similar to that of engineers. The 
“half-baked” task is designed to enable students to take ownership of the techniques and 
concepts associated with the artifacts’ construction (Kynigos, 2015) and eventually refine 
the artifact, integrating the knowledge they have acquired from previous learning. This 
approach seems to fall between the two approaches suggested by Dakers (2024), i.e., 
problems of embodied applied problem-solving and problems involving virtual creative 
problem-solving. 

Morrison-Love (2021) proposed a technological problem-solving (TPS) framework 
consisting of the forms of the task and the related knowledge resources. In this framework, 
the task can be categorized as well-defined, ill-defined, troubleshooting, or emergent. The 
well-defined task depicts a constrained problem with convergent solutions and can be 
solved through a limited number of strategies within well-defined parameters (Jonassen, 
1997). Dakers (2024) also added that a well-defined task often involves pre-existing 
methods to solve it, which follows the idea of embodied applied problem-solving. In 
contrast, Jonassen (1997) defined the ill-defined task as a task possessing various 
solutions and containing uncertainty about which concepts and/or strategies are 
necessary for the solution. The troubleshooting task involves technical or technological 
problems relating to the tools or artifacts (McCade, 1990; MacPherson, 1998; Schaafstal 
et al., 2000). Lastly, the emergent task means that a task is potentially a new/emergent 
problem while solving it (McCormick, 1994). Additionally, Dakers (2024) argued that this 
type of task could lead students to virtual creative problem-solving, enabling the creation 
of something original, new, and never-before-created. Considering these different types of 
tasks, the mandala design task that was highlighted in this study can arguably be described 
as a combination of the troubleshooting and emergent forms. 

In attempting a task, Morrison-Love (2021) elaborated on the types of knowledge that 
can be used, namely, conceptual knowledge, procedural (explicit) knowledge, or tacit-
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procedural (implicit) knowledge. This is also in line with the knowledge required when 
problem-solving with technology as described by Dakers (2024). Students can use one or 
more pieces of knowledge in solving the problem with technology. The technological 
problem-solving construct can thus help us to see how students utilized these forms of 
knowledge when designing mandalas using GeoGebra commands.  

4 Method  

In this section, we describe the research approach that was utilized in our study, the 
participants, the learning scenario, and the data collection and analysis methods. 

4.1 Study design 

This study forms part of a larger research program focusing on the development and un-
derstanding of the integration of computational thinking (CT) into mathematics lessons. 
The educational design research (EDR) by McKenney and Reeves (2018) was suitable for 
our large study as we developed and investigated specific educational innovations. EDR 
involves iterative cycles of design, enactment, analysis, and reflection, with the aim of both 
improving educational practice and contributing to theoretical knowledge (Bakker, 2018; 
McKenney & Reeves, 2018, 2021; van den Akker et al., 2006). The EDR approach has been 
widely used by several scholars researching at the Freudenthal Institute for innovating the 
learning of mathematics (FISME, 2015). Guided by this research approach, we investi-
gated the curriculum and literature on integrating CT into mathematics lessons, and later 
we drafted an initial design of Math+CT lessons consisting of several tasks. 

We piloted the lessons and improved them for consecutive implementations. The 
Math+CT lessons that were used in this study have undergone several iterations 
(Yunianto, Cahyono, et al., 2024; Yunianto, Sami El-Kasti, et al., 2024), and we 
specifically selected and adapted one of the tasks by incorporating elements of visual arts 
and simplifying the coding instructions for the primary school learners (Figure 1). Visual 
arts elements such as line, shape, and colour, combined with geometrical objects such as 
lines, circles, and polygons, become intricate parts of the overall mandala designs.  
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Figure 1.  Iterative cycle of related studies employing Educational Design Research (EDR)  

 

 
Briefly, we will explain the cycles in our study. Cycle 1 began by 1) exploring literature 

and curriculum, 2) designing and developing the tasks or lessons, and 3) piloting these 
tasks with a few students. Students (aged 12-15 years old) learned GeoGebra commands 
relating to the creation of points, angles, several regular polygons, circles, and an inscribed 
polygon within a circle. This cycle can be found in Yunianto, Sami El-Kasti, et al. (2024). 
Based on the revision and improvement of the tasks and lessons in Cycle 1, we then 
conducted Cycle 2 by implementing the revised lessons in several schools with more 
students (aged 12-15 years old). This cycle featured the same artifacts as in Cycle 1, but we 
were further able to record students’ log attempts. In these revised lessons, we could 
therefore record all of the GeoGebra commands/codes as inputted or deleted by students. 
Thus, we could gather more information about students’ strategies in solving our tasks. In 
this cycle, we also focused our analysis on the effects of gender and grades on students’ 
computational thinking performances and learning analytics relating to how students 
struggled with GeoGebra commands in creating the inscribed polygon in a circle. We 
carried out the next cycles (Cycles 3-5) in parallel. 

GeoGebra pop-up notifications are available in English, and it seemed to be a 
hindrance for Indonesian students. Therefore, to understand the effect of English pop-ups 
on students’ learning, in Cycle 3 we implemented the English-translated Math+CT lessons 
in English-speaking Philippines classrooms (aged 12-15 years old). The artifacts that the 
students created were the same as those in Cycle 2.  

 ChatGPT had just been introduced at this time. Considering the importance of this 
emerging tool, in Cycle 4 we embraced ChatGPT in our Math+CT task. We selected and 
adapted one of our tasks by asking our participants to create an inscribed hexagon of a 
certain size and location with the help of ChatGPT. We carried out this cycle with both 
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adults (Yunianto, Galic, et al., 2024) and with Junior High school students (aged 12-13 
years old) (Yunianto, Lavicza, et al., 2024). We attempted to see how ChatGPT could 
support students’ CT skills while learning mathematics. 

In Cycle 2, we had let students learn mathematical constructions through dedicated 
assignments and applicable hints. The emphasis on learning to use GeoGebra for these 
tasks seemed to limit students’ creativity. In Cycle 5, with a new group of students (aged 
18-19 years old), we carried out Cycle 5 to investigate students’ creativity by infusing 
culture and the arts. We introduced students to a short instructional video on how to use 
GeoGebra commands to create inscribed polygons, allowing them to pay more attention 
to the mathematics involved. To challenge their creativity, we also asked them to develop 
Batik stamp designs and to create them using 3D modelling and printing. For more details 
on this study, see Yunianto, Cahyono, et al. (2024).  

In this paper, we specifically report on a second part of Cycle 5 in which we had 
somewhat younger students (aged 9-10 years old) likewise explore the GeoGebra 
commands necessary for creating visual arts designs. As already stated, in Cycles 1 to 4, 
we mainly focused on the creation of inscribed regular polygons within a circle (Figure 2) 
but without considering the visual arts aspect. Now, we challenged young students to make 
these mathematical objects into mandalas. We wondered if or how young students would 
be able to utilize GeoGebra commands to create these complicated visual artworks. 
Additionally, how, with limited mastery of GeoGebra commands, students would be able 
to accomplish the mandala designs while engaging with technological problem-solving. 

Figure 2.  The inscribed hexagon creation in previous cycles 
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The visual arts aspect was intended to provide students with freedom to create artistic 
works from the unfinished artifacts. The goal of this study was to explore how primary 
school students would approach our task and how the CT skills would emerge from their 
engagement with our task. 

4.2 Learning scenario 

Learning about circles and their properties through the direct presentation of formulas 
and with recall-type tasks has led to students’ poor performance on this topic (Mifetu, 
2023). In Indonesia, this was also common practice to “teach mathematics by telling” 
(Fauzan, 2002), or direct instruction, and this practice is still commonly observable (Mu-
hammad et al., 2023). To prepare students with good mathematics problem-solving skills, 
Mifetu (2023) proposed activity-based learning, allowing students to actively engage in 
constructing circles and improving their problem-solving skills. Similarly, this study also 
encouraged students to actively construct circles within a digital environment and sup-
ported students’ problem-solving skills through computational thinking. The following is 
how we structured the lesson. 

We began by introducing students to an anime video of the use of mandalas, directing 
students to the GeoGebra-based Math+CT task, introducing basic GeoGebra commands 
(points and circles) and tools, asking students to continue the mandala design, coloring 
the objects, and lastly introducing the segment command (a GeoGebra command to create 
a line segment) (Figure 1). 

Figure 3.  The learning sequence of GeoGebra-based Math+CT task 
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In this paper, we selected and adapted a task from the previous study (Yunianto, Sami 
El-Kasti, et al., 2024). This task involved the construction of a circle and an understanding 
of several related concepts, namely, the centre point and the radius. The lesson itself lasted 
for approximately 1.5 hours. In order to introduce this topic to primary students in an 
engaging and understandable way, we provided them with a short anime video 
(https://www.youtube.com/watch?v=HGS2__sck24) that presented the use of circles in 
the creation of various artworks. We connected this with mandalas (Figure 4), which are 
sacred geometrical shapes from the Hindu-Buddhism tradition, and which involve circles 
and polygons (Britannica, 2023). In this way, students encountered clear examples of the 
use of circles in creating art. 

Figure 4.  Examples of Mandalas (Free copyright image by Pixabay) 

 

 
After introducing students to the mandalas, they each worked at a desk with a 

computer (in rare cases where there was a problem with technology, students worked with 
a friend). Each computer was connected to the internet, and students were directed to the 
GeoGebra-based Math+CT task that was available on the GeoGebra website 
(https://www.geogebra.org/m/qgq5beag). After visiting the webpage, students were 
instructed by the researcher on how to use GeoGebra commands to create a point. For 
instance, to create a point A with the Cartesian coordinates (1,1), students were instructed 
to enter A = (1,1). This was continued by the creation of point B at coordinates (2,2). The 
researcher then challenged students to create new points C and D using their own selected 
coordinates. Students created points D and E on the coordinates (3,3) and (4,4), 
respectively. Afterwards, students were asked to delete all the constructions by using the 
“Delete” tool for each inputted point (Figure 5). 
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Figure 5.  Constructing points using GeoGebra commands and deleting them 

 

After becoming familiarized with the Point command, the researcher presented the 
GeoGebra command used to construct a circle. First, students were required to create 
point A at (0,0) and then enter L=Circle(A,5) which created a circle with a centre at (0,0) 
and a radius of 5 units. Note that “Lingkaran” means “circle” in the Indonesian language; 
thus, “L” is used to denote a circle construction. To change the size of the radius, students 
could modify the number of the second coordinate. 

Next, students were directed to create a point B on the circle L, and from this new point 
B they were then asked to construct another circle named “L1.” To make it easier, L1, L2, 
L3, etc. were used for the naming of all consecutive circles (Figure 6). 

Figure 6.  Constructing more circles 
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Students were then asked to continue the construction of multiple circle objects within 
their drawing using the commands highlighted above. After they finished constructing 
their objects, the researcher instructed students on how to change the color of an object 
and encouraged them to select and use any combination of colors for their circular designs. 
Lastly, the researcher introduced the segment command. 

4.3 Participants 

This study involved a homeroom teacher and primary school students. Fifteen Grade 5 
Indonesian students (aged 10-11 years), one month into the school year, participated in 
this study. The homeroom teacher informed the parents and guardians that there was an 
additional session under research with their children. If they permitted their children to 
participate, they could respond on the Parents-Teacher WhatsApp group. Parents’ and 
guardians’ consents have been obtained for their children to participate in this study. 
Therefore, students who attended the sessions have their parents’ consents. 

Each student worked on one personal computer (PC) that was located in their school’s 
computer laboratory. Having been introduced to the use of computers since Grade 3, 
participants were familiar with the keyboard and general functionality of the machines 
being used in the study. This fact benefited our study insofar as students were easily able 
to input GeoGebra commands that required certain symbols, such as opened and closed 
brackets. To type an open bracket, for example, students had to press the ‘Shift’ button 
and the ‘9’ button simultaneously. 

The researcher (first author) delivered the task and instructions while the homeroom 
teacher, who was not yet familiar with the GeoGebra software, observed the sessions and 
also helped the researcher to motivate students to share their thoughts during the CT 
activity. 

4.3 Data collection and analysis 

We collected data (i.e., “.ggb” files) from all of the students’ work on the GeoGebra task 
(Figure 7), including three video-screen recordings (Screen 1, Screen 2, and Screen 3) from 
three different students (Student A:male, StudentB:male, and StudentC:female). The se-
lection of the three students was random as we first set up on the computers that could be 
installed with screen video recording add-ons. The start buttons were clicked to record the 
students’ screens before they worked on the task. These videos offered real-time insights 
into students' task engagement and utilization of GeoGebra. The video recordings were 
particularly beneficial for capturing non-verbal communication, problem-solving strate-
gies, and events where students encountered problems in completing the task. 
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Figure 7.  One of the students' works in the form of a GeoGebra (ggb) file 

 

From the students’ GeoGebra files and screen-recording videos, the researchers 
analyzed the data using the content analysis method proposed by Krippendorff (2004). 
This particular content analysis method belongs to directed content analysis, referring to 
Hsieh and  Shannon’s work (2005), as our approach featured the analysis of results from 
an existing framework or theory. This content analysis involved three steps, namely  1. 
making, 2. categorizing, and 3. concluding the codes from the ggb files and screen video 
recordings. Step 1 involved the familiarization with data in which each ggb file would be 
identified and categorized based on the emerging traits or characteristics of the students’ 
unique creations. For example, it might be the case that the creations were distinctly based 
on the colors used or the sizes of the constructed shapes. Figure 8 shows an example of 
student work that uses different and relatively bright colors for each circle within the 
overall design. Then we assigned initial codes for the numbers of objects, commands, and 
colors, such as SC for small circle, BG for big circle, GC for GeoGebra commands, and TCol 
for the total color. The particular CT facet that emerged (i.e., StrugBut, DebgDel, DebgRev, 
NAlgo, Algo, and PR) was also coded. The colors can be coded or categorized into primary 
colors (P), secondary colors (S), and tertiary colors (T).  In Step 2, we quantified the objects 
and categorized them. We categorized the colors used for the big circle only because it 
used only one color. We also categorized if the line segments were used, or not, to connect 
the small circles. We also combined some codes into the same category, such as placing 
both DebgEdt and DebgRev under the category of Debugging Facet; NAlgo and Algo both 
under the category of Algorithm; and PR under the category of Abstraction. In Step 3, we 
communicated these codes related to participants’ strategies and involvement of CT skills 
and connected them with relevant studies in the Results and Discussion sections.  
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Figure 8.  A student uses distinct colors for the circles 

 

Researchers were curious to know if students would use different approaches in 
creating their mandalas. From the screen recording video footage, we would specifically 
focus on the various elements of computational thinking found within the framework 
proposed by Shute et al. (2017).  

5 Results  

This section presents the results of the analysis of the students’ artifacts and video 
recordings, focusing on how primary school students approached the plugged CT activities 
involving GeoGebra and how computational thinking (CT) skills emerged during the task. 
The findings are organized around the two primary research questions. 

5.1 Students’ strategies 

We began to provide the analysis of students’ artifacts derived from ggb files regarding the 
number of colors and commands. Table 1 presents the descriptions of students’ creations 
in terms of the number of the big circle (BC), small circle (SC), number of GeoGebra com-
mands (GC), and total colors used (TCol). Most students used eighteen GeoGebra com-
mands and created five circles (one big circle and four smaller circles). Further, students 
tended to use at least two different colors within their geometric creations. It seems that 
the way students colored the objects is unique.  
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Table 1.  Descriptions of students' creations 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 

Big Circle 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Small Circle 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

GeoGebra Command 18 18 18 18 15 18 18 18 18 18 18 18 18 18 18 

Total Color 2 5 5 3 5 5 5 2 2 5 2 5 5 5 5 

 
All students constructed only one big circle in the centre of their mandalas (Table 1). 

Additionally, all students had the big circle size with a radius of 2 units and the smaller 
circle size with a radius of 1 unit (Figure 9). It seems that students’ creations are uniform 
in terms of the number of objects. However, we could not find the same final artifacts from 
students with the same colors. It seems that in our teaching, we did not really encourage 
students to create more objects, or we did not deliver the message to students that they 
could create as many objects as possible. It might result in various objects and the number 
of commands if we have done so. Therefore, this finding could help us in future 
implementations.  

Figure 9.  The student used distinct colors for the circles 

 

Figure 9 depicts two students’ creations and demonstrates how they each chose to 
color their mandalas. Some students used a dark color for the big circle and a lighter color 
for the smaller circles (Table 2), while others did the opposite. Some students varied the 
colors of the small circles using four different colors. Students primarily connected the 
smaller circles using line segments. Most students connected the smaller circles from 
points that intersected the x-axis and y-axis, and only rarely did students connect circles 
using line segments from other parts of the small circles (Table 2). 
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Table 2.  The colors and the segments used by students 

Student Central Circle’s 
Color 

Four smaller circles’ colors Line segments 

1 Pink (Tertiary) Light Brown/ Yellow 4 small circles connected 

2 Light Blue (Tertiary) Yellow, Pink/Magenta, Purple, Green 4 small circles connected 

3 Purple (Secondary) Light Blue, Pink/Magenta, Light Yellow, 
Light Green 

4 small circles connected 

4 Purple (Secondary) Light purple, Pink Magenta, Light pur-
ple, Pink/Magenta 

4 small circles connected but 
not uniform 

5 Green (Primary) Pink/Magenta, Purple, Blue, Yellow 2 small circles connected 

6 Blue (Primary) Light Purple, Light Blue, Magenta, 
Green 

4 small circles connected but 
not uniform 

7 Yellow (Secondary) Light brown, Light Blue, Pink, Purple 4 small circles connected 

8 Black (Primary) Red, Red, Red, Red 4 small circles connected 

9 Blue (Primary) Purple, Purple, Purple, Purple 4 small circles connected 

10 Black (Primary) Blue, Red, Green, Yellow-Orange 4 small circles connected 

11 Blue (Primary) Green, Green, Green, Green 4 small circles connected 

12 Red (Primary) Light Blue, Dark, Orange, Green 4 small circles connected 

13 Purple (Secondary) Light Blue, Lighter Blue, Blue-Green, 
Purple 

4 small circles connected 

14 Light Green (Tertiary) Orange, Cobalt, Magenta, Yellow 4 small circles connected 

15 Red (Primary) Blue, Green, Pink, Yellow 4 small circles connected 

From the three videos, we could see how students colored the objects. In Screen 1, this 
student used a one-time coloring strategy, meaning that after using a color, this student 
did not change it. Meanwhile, in Screen 2, the student often changed the colors and 
adjusted the opacity of the colors (Figure 10). For example, this student selected green, 
adjusted its opacity, and later changed the color to black. In Screen 3, the student changed 
one time the color for the big circle and then used a one-time coloring strategy. In the 
anime video and the example, the mandalas were not colored, and this coloring activity 
had not given students any examples of colored mandalas. Students had to find their own 
colors, and this seems to have given students the opportunity to use problem-solving skills 
by iterating their colors.  
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Figure 10.  A student changed and adjusted the colors overtime 

 
 
After students colored their objects, they continued to use the segment command. The 

use of the segment command appeared to be relatively easy for students, as they just had 
to enter “Segment(Point1,Point2).” For instance, a student entered the command 
“Segment(F,G)” and the line segment FG would be created. Most students created 
segments FG, GH, HI, and IF. Only two students constructed the segment differently (see 
Figure 11), creating a segment labeled HE. It seemed that the student who created the 
mandala on the right tried to construct a line segment EF but perhaps failed, and this 
resulted in the creation of line segment EB. To some extent, the use of segments was 
limited to connecting only the small circles. We should have encouraged students to use 
the segment command to connect anything.  

Figure 11. Two students constructed rather different line segments (not uniform) 
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One student’s work featured the creation of only a single line segment (see Figure 12). 
It is possible that this student was busy with the coloring feature and thus did not realize 
that they should proceed with line segment creations.  

We further noticed that some students were busy arranging the colors in such a way 
as to position the smaller circles either in front of or behind the larger circle. For example, 
in Figure 12, we see that a student tried to have the smaller circles appear behind the larger 
circle. However, the small yellow circle appears to be not yet set to appear behind the large 
green circle. In GeoGebra, the preceding object’s color would automatically appear behind 
the most recently created object. Therefore, it appears likely that this student first created 
three smaller circles, then the larger circle, and finally the fourth smaller circle, hence the 
yellow shape appearing in front of the group. 

Figure 12.  A student’s incomplete segment creations 

 

5.2 The emergence of CT skills 

We analyzed three screen-recording videos to look at how students CT skills emerged 
while students engaged with our task. In Screen 1, within less than two minutes, the male 
participant (StudentA) was able to input the GeoGebra command for creating a point. In-
itially, this student made a mistake while entering the open bracket by hitting the 9 key 
without the Shift button also being depressed (Figure 13). We coded this as an example of 
struggling with a symbol which required pressing the Shift button (i.e., code StrugBut). 
Later, he easily inputted the brackets for constructing objects. 
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Figure 13.  The progress of inputting the correct command 

 

 Meanwhile, in Screen 2, another male student (StudentB) made a similar mistake in 
entering “9” instead of “9 + Shift key” for the open bracket creation, and this resulted in 
the creation of point E and a slider instead of a singular point (see Figure 14). While this 
case was likewise coded as a “struggle involving a button,” or (StugBut), we also coded it 
as an example of “debugging by deleting,” or (DebgDel) since he had deleted the faulty 
command and then inputted the correct command. 

Figure 14.  The student mistakenly uses 9 instead of an open bracket, resulting in a slider 

 

In Screen 3, a female participant (StudentC) did not make any apparent mistakes when 
creating objects during the activity due to her ability to properly use commands. 

Clearly, mastering the use of the various keys and keystroke combinations used to 
input commands in GeoGebra is important for students in terms of successfully working 
with the syntax of textual programming. In the case of StudentA, he was able to quickly 
adjust his ability to find and use the combination of the Shift and 9 keys to obtain the 
symbol for brackets, even when he did not at first succeed (Figure 15). Overall, students 
used correct input and coordinates for creating their points. 

Figure 15.  StudentA learned quickly on how to get brackets 
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On another occasion, when StudentA had learned about the GeoGebra command for 
creating a circle, he made a mistake in creating point B by using the period (‘.’) as the 
separator rather than the comma (“,”) and thus created a slider instead of a point. 
StudentA realized his mistake and revised the command to read “B=(2,0)” instead of 
“B=(2.0).” It is possible that the proximity of the period and comma keys on a keyboard 
led to the unintentional selection of the period key. Regardless of the reason for the 
mistake, he successfully revised his keystroke input by deleting the incorrect command 
and replacing it with the correct one. This instance was also coded as “debugging by 
deleting” or (DebgDel). 

StudentB made a mistake by forgetting the separator when creating point D by 
inputting D=(-2) resulting in the creation of a slider (see Figure 16). Later, he deleted the 
incorrect command, replacing it with the correct command.  

Figure 16.  A student enters incomplete syntax, resulting in a slider creation 

 
 

The previous examples of student mistakes provide us with some clear samples of the 
critical thinking component “debugging by revising mistakes.” 

Another interesting finding is that StudentA used a different command than the one 
that was introduced by the researcher and was thus able to successfully create the object 
(Figure 17). More specifically, instead of inputting “L2=Circle(B,1),” he entered the 
command “L2:Circle(B,1)” which had not been presented in class. We coded this item as 
“using a new algorithm,” or (NAlgo). This new method was then used by StudentA on the 
consecutive circles L3 and L4. StudentB and StudentC both followed the command 
introduced by the researcher (i.e., using the “equal” sign, “=”). 
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Figure 17.  A new, non-demonstrated command was used by StudentA 

 

The next activity was to color the objects (Figure 18). StudentA adjusted the color so 
that it would appear more transparent. StudentB and StudentC also preferred transparent 
colors for their mandala constructions.  

Figure 18.  Setting up the object’s color on GeoGebra 

 

After students colored the objects, another GeoGebra command for creating a segment 
was introduced. Students could connect two points to create a line segment by inputting 
“Segment(Point1,Point2).” Once this command was introduced, StudentA appeared to be 
able to use it immediately. Note that this student did not create the line segments 
sequentially but rather in a random order by inputting Segment(F,G) and then 
Segment(H,I) (Figure 19). In other words, it seems that this student realized that the order 
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does not matter in terms of creating the line segments as long as each pair of two points is 
connected. We thus coded this example as “Pattern Recognition,” or (PR).  

Figure 19.  Creating line segments in a more apparently random order 

 

From students inputted commands, we could trace the way students inputted the 
segments (Figure 20). In the case of StudentA, he entered the commands Segment(F,G), 
Segment(H,I), Segment(I,F), and then Segment(G,H); he did not choose to follow a 
clockwise or a counter-clockwise pattern as other students had done.  

Figure 20.  The order of line segment commands entered by StudentA 

 

StudentB used another approach by following a clockwise pattern and entering the 
commands in the order Segment(F,G), Segment(F,E), Segment(E,H), and Segment(H,G). 
Interestingly, the line segment creations were different from what most other students 
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did. He did not connect point I, and this resulted in a unique mandala design (Figure 21 
left). However, he later revised the segments and connected the point I (Figure 21 right). 
We coded this as “Debugging by Revising the Commands,” or (DebgRev). 

Figure 21.  StudentB revised the line segments by editing the commands 

 

In contrast, StudentC used a counter-clockwise pattern (see Figure 22) by entering the 
line segment comments in the order Segment(F,G), Segment(G,H), Segment(H,I), and 
Segment(I,F). Therefore, we assume that StudentB and StudentC apply a procedure to 
create the segment, and it is coded as an “algorithm” or (Algo). 

Figure 22.  StudentC entered the line segments using a counter-clockwise pattern 

 

6 Discussion  

As we utilized GeoGebra commands, this approach bears resemblance to Papert’s (1980) 
pioneering work with “Logo Turtle” and later evolved into “Turtle Geometry” wherein stu-
dents were required to command the turtle to move and trace lines in order to create math-
ematical objects. In this paper, we encouraged students to create artistic, digital mandala 
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objects through the use of specific GeoGebra commands. Students were required to type 
in commands to construct points, circles, and line segments and to later adjust the color 
of their objects. We found that a few students struggled with the use of brackets as it re-
quired students to press two keys (Shift and 9) simultaneously. In sometimes forgetting 
to press the Shift key, this resulted in a “9” being entered instead of the required open 
bracket (“(“). Even in these instances, students often were able to self-correct their mis-
takes through ongoing inquiry and visual feedback. 

In primary schools, it is common to introduce computational thinking through 
unplugged activities and block-based programming (Polat & Yilmaz, 2022). It seems that 
there is, at least more recently, a preference to introduce CT in primary schools through 
visual programming software such as Scratch or similar programs (Chan et al., 2022; 
Erdem & Kalelioğlu, 2024). Similarly, Tsukamoto et al. (2016) argued that visual 
programming is highly suitable for primary school students. Resnick et al. (2009) 
developed the software entitled “Scratch” in order to support young students and teachers 
in learning how to code, or master simple programming skills, via a more visual, click-
and-drag approach. While young students may struggle with syntax and textual 
programming, proper classroom support can assist them in also developing these 
important skills. Tsukamoto et al. (2015) provided a successful example of utilizing text 
programming for students in primary schools. In our study, we utilized mathematics 
software, GeoGebra, wherein students are required to enter specific commands to 
construct objects. To some extent, primary school students in this study did not encounter 
serious technical problems with the GeoGebra commands and utilization of the 
computer’s button keys.  

Additionally, in terms of mathematical concepts, Grade 5 students in our study 
correctly used the point creation feature by successfully entering coordinate information. 
Tsukamoto et al. (2015) found that young primary school learners can indeed handle the 
coordinate system understanding and related skills. While the National Curriculum of 
Indonesia currently does not include the learning of the Cartesian coordinate system in 
Grade 5, our findings could be useful in reconsidering the placement and timing of these 
important mathematical skills. Moreover, related to the mathematics concepts such as 
points, line segments, and circles, students in Indonesia learn these math content items 
under geometry and measurement. Therefore, students should be able to differentiate 2D 
objects. This corresponds to Level 2 of van Hiele’s (1984) geometry thinking, related to 
the property of geometrical objects. Research by Skordialos and  Baralis (2017) revealed 
that Grade 2 students were motivated in learning geometry with technology and could 
arrive at Level 2 of van Hiele’s geometry thinking. This is in line with our finding that 
students were able to create circles with the intended coordinates and sizes, a skill which 
belongs to Level 2 of van Hiele’s model. If they have not grasped the idea of the size of the 
circle (the radius), it would be difficult for students to create four smaller circles with the 
same radius but with different centers in GeoGebra. Understanding the mathematics 
concepts and the use of GeoGebra commands made it possible for students to create the 
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circles with different sizes and centers thus clearly depicting Level 2 aspects of van Hiele’s 
geometry thinking. 

In terms of students’ artistic mandala creations, we found that students used different 
colors and strategies. While most of the designs were fairly similar in nature, there was 
evidence of some creativity in terms of both colors and coding input. In adopting the “half-
baked artifact” approach proposed by Kynigos (2007), this led participating students to 
continue patterns and produce similar shapes. It appeared that most students followed 
the pattern to complete the mandala so that their mandala became uniform (i.e., one large 
circle and four connected smaller circles). It may be the case that students needed more 
encouragement to go beyond the simple examples and/or that this expectation was not 
clearly communicated. Some follow-up questions need to be developed to support 
students’ initiative to create more circles and unique mandalas. However, when it came to 
adding colors, there were definitely some aspects of creativity in terms of the type of 
objects, the number of colors used, and the lines constructed. This kind of activity could 
be considered as students developing problem-solving skills utilizing technology in a 
creative manner, as proposed by Dakers (2024). Additionally, coloring objects digitally 
allowed students to freely and flexibly change or replace the colors, unlike options that 
would be available to them in a comparable paper-based activity. Further research relating 
to the digital coloring could engage students even more significantly with creative 
processes and products (Angeli et al., 2023; Tokuihsa & Kamiyama, 2010). 

The first research question has been answered from the previous explanations, which 
show that students did not encounter serious problems with GeoGebra commands and 
swiftly used the commands and tool to create and creatively color the mathematical 
objects. They also used different colors and coloring strategies for their mandalas.  

Understanding that problem-solving skills are critically important, in this study we 
also investigated CT skills emerging from our Math+CT task. Students engaged in Polya’s 
problem-solving steps, i.e., (1) they understood what they had to solve (creating the 
mandala); (2) they devised the plan (selecting centers and radii for the circles, the line 
segment connections, and colors); (3) they inputted GeoGebra commands to create the 
objects; and (4) the looked back at the coordinates, sizes, and colors of the objects to 
complete their mandalas. The task provided students with adequate freedom so that the 
plans and execution aspects could vary for each student, resulting in different outcomes. 
Moreover, technological problem-solving by Morrison-Love (2021) was observable when 
students debugged the commands, operated the Shift key button, and organized the colors 
to be in contrast to the big circle. However, an emergent task was not yet appearing, such 
as constructing other objects or investigating other commands. Students also created 
something unique and personalized that had never been created before, having only 
briefly seen one example and thus not able to mimic it. This resonates with the virtual 
creative problem-solving presented by Dakers (2024). Moreover, students apparently 
engaged in computational activities when creating their mandalas. We observed students’ 
looking for a pattern when constructing the consecutive points and circles. Without 
further instruction, students continued the pattern thereby creating objects required to 
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finish the mandala. As in Shute et al. (2017), pattern recognition is an important sub-set 
of the abstraction facet. 

Shute et al. (2017) defined an algorithm as creating a set of coherent and systematic 
instructions for the effective execution of a task by either a human or a machine. In our 
study, students were introduced to simple examples of how to use the Point command, 
Circle command, and Line Segment command in the software GeoGebra in order to 
complete their mandalas. Some students created segments by following the clockwise or 
counter-clockwise manner, and it is such a procedure followed by them. While these 
commands were readily implemented by students, there was at least one instance where 
a participant developed their own variation of a command entry, which served to equally 
construct a valid circle. Whether this was an example of a random keystroke entry error 
that inadvertently resulted in a functional code, or whether the student repeatedly tried 
different command variations until one worked, or whether the student may have had 
prior experience with GeoGebra coding options remains to be seen. Notwithstanding the 
student’s method or background knowledge, this instance does serve to highlight the 
potential for creative space and algorithmic exploration while using such software. 

Another CT facet that is apparent in this study is debugging. Students revised their 
incorrect commands by deleting and editing the command that they had previously 
entered. This is in line with Yunianto, Sami El-Kasti, et al’s. (2024) claim that GeoGebra-
based Math+CT lessons can assist students in developing their debugging skills. Likewise, 
in this current study, some students were able to detect their mistakes and to revise their 
commands as per the definition of debugging proposed by Shute et al. (2017). 

The second research question has been answered that students have been involved in 
recognizing patterns when constructing consecutive objects depicting a sub-skill of the 
abstraction; inputting GeoGebra commands for creating mathematical objects such as 
points, circles, and segments, depicting algorithm design; and revising and improving 
their GeoGebra commands, depicting the debugging. Therefore, this study presented and 
supported three CT skills that emerged in our Math+CT task involving primary school 
students. 

7 Conclusions  

Our investigation clearly demonstrated that primary school students can indeed enjoy and 
be successful mathematically while working with textual programming within a software 
such as GeoGebra. Students were engaged in technological problem-solving and were 
capable of understanding and extending their learning around simple coding commands 
while constructing mathematical objects. Additionally, students were able to enhance 
their creativity through the completion of the “half-baked task” set before them in terms 
of object size, complexity, and color patterns. Moreover, lessons such as the one 
implemented here can easily be modified to allow for even more creativity in the task 
completion in terms of added commands or more complex geometric and algorithmic 

https://doi.org/10.31129/LUMAT.13.2.2547


Yunianto et al. (2025)                                                                                                                                                    28/32 
 

LUMAT Vol 13 No 2 (2025), 1. https://doi.org/10.31129/LUMAT.13.2.2547 

expectations. Factors affecting the type and degree of students’ computational thinking, 
such as debugging, algorithm design, and abstraction, were addressed in the study and 
could be further explored in future research. 

While this study was obviously limited in terms of its participant sample size, grade 
level, and the relatively narrow geometric focus (i.e., circle and line segment construction), 
it nonetheless sheds significant light on the potential benefits of plugged, programming-
based, arts-integrated learning strategies for primary school students. Further research 
with even younger students in different educational contexts and with more elaborate 
geometric and algorithmic goals is indeed encouraged and warranted.  
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