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The study of mathematics at the university level requires logical thinking and strong 
mathematical skills. Contemporary first-year students are not prepared for these 
demands and end up failing their courses. This study aims to present an instrument 
for enhancing mathematics teaching and promoting learning with understanding in 
higher education by a combination of symbolic, natural, and pictorial languages in 
different tasks. We analyze the 17 solutions of four languaging exercises 
administered in a basic calculus course for engineering students at the University 
of Costa Rica. The results suggest that these exercises promote the acquisition of 
skills necessary to be mathematically proficient and are a useful tool for revealing 
students’ mathematical thinking and misconceptions. 

Keywords: languaging, university mathematics teaching, mathematical proficiency 
derivatives 

1 Introduction 

In the last years, research in university mathematics education has increased 
substantially (Biza et al., 2016; Goodchild & Rønning, 2014), and the transition from 
high school mathematics to university mathematics has been intensely discussed 
(Winsløw et al., 2018; Varsavsky, 2010). There is a general concern about first-year 
students’ unpreparedness to face university level mathematics. A significant portion 
of students enrolled in non-mathematics majors experience the consequences of this 
knowledge gap, which are seen in the alarming rates of failure and dropout presented 
in the mathematics courses taken (Biza et al., 2016; Fox et al., 2017).  

Several researchers (e.g., Artigue, 1995; Kilpatrick et al., 2001; Winsløw et al., 
2018) point out that students enter the university without strong mathematics 
knowledge. This problem was already identified in 1972, as presented by Hoyles, 
Newman, and Noss (2001) in this excerpt that points out that:  

“[students] do not understand the mathematical ideas which university 
teachers consider basic to their subject; they are not skillful in the manipulative 
processes of even elementary mathematics; they cannot grasp new ideas 
quickly or at all; … and, particularly, they have no sense of purpose that is, they 
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do not seem to realize that in order to study mathematics intensively they must 
work hard on their own trying to sort out ideas new and old, trying to solve test 
problems, and so on.” (Thwaites, 1972, as cited in Hoyles et al., 2001, p.831) 

Contemporary students continue to present the same difficulties. They have 
deficiencies in problem-solving skills, conceptual understanding, and the thinking 
and reasoning skills needed for the university level (Kempen & Biehler, 2014; Er, 
2018; Gruenwald et al., 2004; Luk, 2005). Although they are successful in tasks of 
mechanical calculation, the practical and theoretical meaning of the lessons’ contents 
is not clear to them. It is evident that there is a knowledge gap between high school 
and university mathematics that influences the students’ performance.  

Biza et al. (2016) and Hong et al. (2009) associate students’ low performance in 
the first courses of university mathematics with changes in teaching styles, required 
study and learning strategies, and the nature of the mathematics that is taught.  

This knowledge and the cultural gaps should be addressed by institutions of higher 
education by promoting conceptual understanding (Engelbrecht & Harding, 2015). 
These initiatives must convey the connections between concepts (Nardi, 1996), the 
abstract nature of mathematical notions, and the complexity of mathematical 
thinking (Biza et al., 2016).  

 Some universities have taken measures to fill in the gaps in first-year university 
students’ knowledge of mathematics, such as peer work, bridging courses, and 
mathematical support centers (Mustoe & Lawson, 2002). Initiatives that work on 
improving conceptual understanding have been introduced in some engineering 
courses at the University of Tampere. In this institution, they have used languaging 
exercises as a tool for improving students’ understanding of concepts (e.g., Rundgrén 
et al., 2016). This strategy showed favorable results not only for improving students’ 
understanding but for promoting learning and improving the students’ grades.   

As in other countries, in Costa Rica, the knowledge gap between high school and 
university mathematics is a significant problem. This situation led the University of 
Costa Rica to introduce, in 2015, a mandatory precalculus course for students in non-
mathematics majors with severe mathematical deficiencies. However, the course has 
had a pass rate of only 40% (Blanco, 2019). A significant problem with the math 
courses for engineering students has been that the teaching methods and objectives 
of the course are not focused on improving students’ conceptual understanding but 
on reinforcing the mechanical solution of equations such as limits, derivatives, and 
integrals. According to the course syllabus, the approach is not formal, focused on 
proofs, but is instead focused on applications and practicing calculation techniques 
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(University of Costa Rica, 2019). Classes consist mainly of lectures in which the 
teacher explains the concepts and solves examples. The role of the student is more of 
a receiver and less of a participant. 

The present research aims to improve university mathematics teaching at the 
University of Costa Rica through the use of languaging exercises in classes. The 
exercises integrate the use of natural, symbolic, and pictorial language and aim to 
improve students’ mathematical understanding, mathematical communication, and 
justification skills, as well as help students to be aware of their mathematical thinking. 
This proposal intends to move from the traditional teaching method commonly used 
in the university's calculus courses towards an alternative in which students 
participate in their learning process. In the same way, it aligns with the need for 
initiatives that deal with the difficulties in the transition from high school to university 
mathematics, addressing the abstract character of the mathematical concepts and the 
complexity of the mathematical thinking (Biza et al., 2016).  

2 Theoretical framework  

2.1 Mathematical proficiency  

In the field of mathematical education, how mathematics learning is conceived of has 
changed over the years. According to Boesen (2014), these changes have focused on 
highlighting that knowing mathematics implies more than knowing how to perform 
procedures; it is about doing mathematics from a broader perspective. The model of 
mathematical proficiency (Kilpatrick et al., 2001) aligns with this perspective and 
provides an outline for the competencies needed to achieve mathematical 
understanding.  

Kilpatrick et al. (2001) consider five main competencies that are necessary for 
learning mathematics: conceptual understanding, procedural fluency, adaptive 
reasoning, strategic competence, and productive disposition. This model intends for 
students to learn with understanding, since “learning with understanding is more 
powerful than simply memorizing because the organization improves retention, 
promotes fluency and facilitates learning related material” (Kilpatrick et al., 2001, p. 
118). For the authors, deep understanding requires the connection of individual pieces 
of knowledge. They emphasize that their five main competencies are intertwined; in 
other words, each depends on the others to fully develop and be useful for solving 
mathematical problems. Consequently, each competency should receive the same 
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importance in the educational context. Table 1 shows the skills of each competence 
that are important at the university level, and for the interests of this research. 

 . Specific skills for each competence 

 
This model has been used before in research related to improving students’ 

understanding of mathematics at the university level (e.g., Silius et al., 2011; 
Joutsenlahti et al., 2016). Working on the development of these competencies could 
increase the chances of learning with understanding, which would be beneficial for 
students in terms of advancing in their studies successfully.  

2.2 Languaging for expressing mathematical thinking 

Language has been proved to play a significant role in teaching and learning 
mathematics. From a social-semiotic point of view, it is not only a powerful tool for 
communication and representation but also for thinking and meaning-making 
(Schleppegrell, 2010). According to Prediger and Wessel (2013), the construction of 
new mathematical concepts requires the acquisition of new means for expressing 

Conceptual 
Understanding 

- Understand why a mathematical idea is important 
- Understand when and where an idea is useful 
- Understand, identify, and verbalize connections between concepts 
- Remember and reconstruct methods 
- Monitor students’ work 
- Represent mathematical situations in different ways 
- Explain why some facts are a consequence of others 
- Understand and use mathematical concepts in various contexts properly 

Procedural 
Fluency 

- Know when and how to use procedures appropriately,  
flexibly, accurately, and efficiently 
- Performing mental methods 
- Mechanical counting, solving procedures, simplifying 

Strategic 
Competence 

- Know a variety of solution strategies 
- Select strategies for solving problems 
- Formulate problems 
- Know different representations of problems and select the most useful 
- Flexibility of approach, solve novel situations 

Adaptive 
Reasoning 

- Knowledge of how to justify conclusions 
- Give informal explanations and justifications 

Productive 
Disposition 

-  Students’ beliefs about the importance and utility of learning 
mathematics 

Source: Based on Kilpatrick et al. (2001). 
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them. It is in this sense that Joutsenlahti and Kulju (2017) present languaging as a 
multimodal approach for developing students’ meaning-making processes in 
mathematics.  

Languaging is defined as the student’s expression of their mathematical thinking 
across different modes. Seen in terms of languaging, mathematical thinking is “an 
information process monitored by one’s metacognition” (Joutsenlahti & Kulju, 2017, 
p. 3). The expression of the students’ mathematical thinking is observed through oral 
or written languaging exercises, involving three languages: mathematical symbolic 
(SL), natural (NL), and pictorial (PL) (see Figure 1). The combination of different 
languages promotes the construction of connections and aims to support the student's 
meaning-making process (Joutsenlahti et al., 2016), since they access three different 
meaning potentials (i.e., SL, NL, and PL) to construct mathematical reality. Each 
language shows specific properties and connotations of the mathematical concepts 
(O'Halloran, 2015). 

 

 

 Languages used for expressing mathematical thinking.                                                                             
Adapted from Joutsenlahti & Kulju (2017). 

Moreover, the literature suggests that, through writing, students try to express 
their thinking process clearly and concretely so that readers can understand (Morgan, 
2002). Students must sort out their thoughts and review and clarify their mental 
processes to explain them to others orally or in writing. This practice will improve 
their understanding of mathematical concepts (Kline & Ishii, 2008; Silius et al., 2011). 
Having the answers written and explained in the students’ own words helps teachers 

Mathe-
matical 

Thinking 

Mathema-
tical 

Symbolical 
Language 

(SL)

Natural 
Language

(NL)

Pictorial 
Language

(PL)
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to follow the mathematical thinking of students, and it is also useful for students to 
understand the solution processes afterward (Morgan, 2002; Silius et al., 2011). 

At this point, it would be valuable to clarify the link between languaging theory 
and the mathematical-proficiency model. On the one hand, the use of NL and 
students’ own words relate to adaptive-reasoning skills when giving explanations and 
justifications, as well as to conceptual understanding when verbalizing connections 
between concepts. On the other hand, SL and the PL are present in strategic 
competency when knowing and selecting different solution strategies, in procedural 
fluency when solving procedures accurately and efficiently, and in conceptual 
understanding when representing mathematical situations in different ways.   

In this article, we use languaging theory to address the study of derivatives in a 
calculus course. Derivatives are essential content for non-mathematics majors in any 
basic calculus course because of their many applications in fields such as economics, 
engineering, and biology. Derivatives can be represented in different ways according 
to the interpretation given to them. For example, it can be understood geometrically 
with pictorial representation as the slope of the line tangent to a curve at a given point, 
an interpretation that will be strictly linked to the algebraic-symbolic representation 
of the equation of a line (Kaplan et al., 2015). A complete understanding of derivatives 
concept requires understanding each of its interpretations and representations, 
including the connections between them. 

Considering the multi-representational characteristics of the concept of 
derivatives, languaging theory offers an appropriate way to approach its study.  

2.3 The study of derivatives: The Costa Rican context 

In Costa Rica, the topic of derivatives is not included in the mathematics curriculum 
in high school, although it might be studied in some private high schools, scientific 
high schools, or special optional programs in advanced mathematics that public 
universities offer in secondary school. Therefore, when students get to university and 
take their first mathematics courses, they have no or only a little knowledge about 
derivatives and their applications. At the University of Costa Rica, this topic is covered 
for engineering majors in the Calculus I course, after the study of limits. The course 
contents include (a) the definition of derivatives as a limit; (b) differentiation rules, 
relationship between continuity and differentiability; (c) derivatives as the slope of 
tangent lines; (d) derivatives as rates of change; (e) optimization problems; (f) 
minimum and maximum; and (g) graphing. However, all these topics are studied from 
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a procedural point of view; that is, the focus is on learning and practicing calculation 
techniques (Universidad de Costa Rica, 2019). Some content, such as optimization 
problems, requires problem-solving skills, but the emphasis is still on the 
calculations. Consequently, students are trained in procedural fluency but do not 
develop the rest of the mathematical-proficiency model skills. 

Considering the evidence presented above, in this study, we aim to answer the 
following research questions: 

1.  How are mathematical-proficiency features shown in answers to the languaging 
exercises?  

2.  How do answers to the languaging exercises reveal students’ mathematical 
thinking about derivatives? 

3 Methodology 

3.1 Data collection and analysis 

The exercises analyzed in this article are part of the instruments used in one study 
about students’ perspectives on the use of languaging exercises developed in the 
University of Costa Rica in 2017 (Alfaro, 2018). Initially, 17 languaging exercises 
covering derivatives were designed and applied in a course for first-year engineering 
majors in Calculus I at the University of Costa Rica. The exercises were reviewed by 
the collaborating teachers’ previous implementations to ensure consistency of 
language and context. For this study, we chose four languaging exercises that 
exemplify the usefulness of this tool in developing mathematical-proficiency skills 
and reveal the students’ mathematical thinking. We analyzed the solutions of 17 
engineering majors from the University of Costa Rica. The participants voluntarily 
agreed to participate and were informed that their performance in the exercises would 
not affect their course grade and that the data would be treated confidentially.  

The collaborating teachers received information about the languaging theory and 
the desired objective of the exercises. However, they were free to decide when to 
implement the exercises as they progressed through the program. In the same way, 
they decided at what point in the class to use the exercises, for example, to introduce 
the topic, as an example, or as homework. Students did not receive any special 
language training before solving the exercises other than references to the various 
representations that teachers used when giving lectures. Therefore, the use of 
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languaging exercises in this study intents to introduce the students to a way of solving 
exercises where they have to make more connections. They are a methodological tool 
more than a methodology itself.  

From the languaging exercises, we received answers in NL, PL, and SL that led us 
to a direct qualitative content analysis (Hsieh & Shannon, 2005) based on the 
mathematical-proficiency model, using the concepts in Table 1 as a guide and with the 
specific aspects of each strand as described by Kilpatrick et al. (2001). This analysis 
addresses the first research question. The productive-disposition strand was not 
considered, as it was difficult to observe through students’ written solutions. In order 
to answer the second research question, we performed a conventional content analysis 
considering the mathematical contents included in the course syllabus about 
derivatives.  

3.2 Description of the exercises  

The following is a description of Languaging Exercises 3, 14, 16, and 17: Exercise 3, 
shown in Figure 2, studies three cases in which a function is not differentiable. Each 
case is represented in the table using a different language. The students’ task is to fill 
in the empty boxes with the representations in the missing languages. This exercise 
includes knowledge of the definition of derivatives (geometric, analytical), conditions 
of derivability and continuity, understanding and calculation of limits, and basic 
notions of graphing functions. The purpose of the exercise is to observe whether 
students have clarity about the concepts and rules involved so that they can use them 
with any of the representations given and express them in different ways. This exercise 
focuses on conceptual understanding and adaptive reasoning, as described in Table 1. 
Additionally, it supports the use of the three languages suggested by languaging 
theory.   
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 Languaging Exercise 3, from Alfaro (2018). 

In Exercise 14, the analytic characteristics of a function are given using 
mathematical symbolic language (see Figure 3). The information involves 
intersections with the axes, maximum and minimum points, intervals of monotony 
and concavity, and details about the behavior of the function in the infinities. The 
students' task is to explain, in their own words, the graphical implication of each given 
statement and make a sketch of a graph that meets the given conditions. This exercise 
is similar to the one used by Baker et al. (2000) in their study, “A calculus graphing 
schema.” As the authors point out, this is a non-routine exercise about graphing, 
which aims to evaluate if the students can interpret the given characteristics by 
providing accurate explanations and visualizations of the graphical implications of the 
features. This exercise promotes adaptive-reasoning skills connected to the use of NL 
when asking for explanations and justifications and besides it supports strategic 
competence (see Table 1).  

 
 
 
 
 

What are the possible cases in which a function is not derivable? 
Give examples of each of them using the three types of languages. 

 
 Mathematical symbolic 

language: numbers, 
symbols. 

Natural language: 
written words. 

Pictorial language: 
drawings, graphs, etc. 

I 

 At points where the 
curve presents peaks 
since the lateral 
derivatives would be 
different. 

 

II 
𝑓𝑓(𝑥𝑥) = √𝑥𝑥3 , 𝑖𝑖𝑖𝑖 𝑥𝑥 = 0   

III 
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 Languaging Exercise 14, from Alfaro (2018). 

Exercise 16 is an optimization problem in which students must find the measures 
that minimize the amount of material needed to build a cylinder, that is, its area, 
knowing its volume. Students are asked to assume that they have to explain how to 
solve the problem to one of their classmates and write that explanation in their own 
words, justifying the statements used and including the symbolic or pictorial elements 
they consider necessary. However, they do not need to solve the problem, that is, to 
perform the calculations. This exercise aims to identify if students understand how to 
solve this type of problem in a way that they can explain to others. While writing, 
students must revise the mental process they used for solving the problem. In this 
way, they become aware of the mathematical ideas, the connection between concepts 
and the strategies involved in the resolution of the optimization problems. In other 
words, it stimulates adaptive-reasoning skills and the use of NL together with the use 
of conceptual understanding (see Table 1). 

Finally, Exercise 17 concerns the chain rule for deriving composite functions. The 
exercise shows a composite function and three attempts at solutions by three solvers. 
Two attempts show the steps of the solution in symbolic language, and the other 
shows a calculator’s result. Students have to decide who got the right answer, 
determine the errors in the wrong answers, and present the correct solution. The 
objective of this exercise is to apply students’ knowledge of the basic derivation rules, 
as well as the chain rule for composite functions, to identify the correct answer. The 
exercise is designed so that the correct answer is the calculators. Therefore, the 
students must construct the solution for the derivatives. The two incorrect solutions 
present errors that students frequently commit in this type of exercise, with the 
intention that, by identifying errors in the work of others, they will not commit them 

Consider the following information which is fulfilled for a function 𝑓𝑓 

• 𝑓𝑓 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 
• 𝑓𝑓(−1) = −1, 𝑓𝑓(2) = −1, 𝑓𝑓(−3) = 4, 𝑓𝑓(0) = 0  
• 𝑓𝑓′(−1) = 0, 𝑓𝑓′(2) = 0 
• 𝑓𝑓′(𝑥𝑥) = 0 𝑖𝑖𝑓𝑓 𝑥𝑥 < −3 
• 𝑓𝑓′(𝑥𝑥) < 0 𝑖𝑖𝑖𝑖 𝑐𝑐ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑐𝑐𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ]−3,−1[  𝑖𝑖𝑖𝑖𝑎𝑎 ]0,2[ 
• 𝑓𝑓′(𝑥𝑥) > 0 𝑖𝑖𝑖𝑖 𝑐𝑐ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑐𝑐𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ]−1,0[ 𝑖𝑖𝑖𝑖𝑎𝑎 ]2, +∞[ 
• 𝑓𝑓′′(𝑥𝑥) > 0 𝑖𝑖𝑖𝑖 𝑐𝑐ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑐𝑐𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ]−3,0[ 𝑖𝑖𝑖𝑖𝑎𝑎 ]0,5[ 
• 𝑓𝑓′(𝑥𝑥) < 0 𝑖𝑖𝑖𝑖 𝑐𝑐ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑐𝑐𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ]5, +∞[  
• lim

𝑥𝑥→+∞
𝑓𝑓(𝑥𝑥) = 6 

Explain in your own words the graphic implication of each of the above points. Then make an 
outline of the chart that meets the conditions. 
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in the future. The skills from Table 1 promoted in this exercise are procedural fluency, 
conceptual understanding, and adaptive reasoning.  

 Languaging Exercise 17. 
 

4 Results  

4.1 Evidence of mathematical-proficiency strands in students’ answers 

By means the model of mathematical proficiency, it was possible to identify various 
characteristics that relate to the strands in the students’ answers: conceptual 
understanding, procedural fluency, adaptive reasoning, and strategic competence.  

Conceptual understanding 

Examples of specific skills of conceptual understanding were present in the students’ 
answers. The dominant skill was the one that makes connections between concepts. 
This makes sense because the study of derivatives requires students to understand 
and be able to apply definitions and prior concepts, such as limits and continuity. 
Students must be able to understand the relationship between those concepts and 
derivatives. The connections were shown when the students related the symbolic form 
of a function with its respective graphic representation (Table 2A) by using previous 
knowledge to make conclusions (Table 2B) and when justifying the choice of strategies 
(Table 2C).  

 
 
 

We had ℎ(𝑥𝑥) = 𝑔𝑔�𝑓𝑓(𝑥𝑥)�, 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥 and 𝑔𝑔(𝑥𝑥) = 2𝑥𝑥2 + 1. Daniel and Josué derivate ℎ′(𝑥𝑥) as follows: 
Daniel’s answer Josué’s answer 

𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥 
𝑔𝑔′(𝑥𝑥) = 4𝑥𝑥 
so ℎ′(𝑥𝑥) = 𝑔𝑔′�𝑓𝑓(𝑥𝑥)� = 4𝑒𝑒𝑥𝑥 

ℎ(𝑥𝑥) = 𝑔𝑔�𝑓𝑓(𝑥𝑥)� = 2(𝑒𝑒𝑥𝑥)2 + 1 = 2𝑒𝑒𝑥𝑥2 + 1 
ℎ′(𝑥𝑥) = 2𝑒𝑒𝑥𝑥2 ∙ (2𝑥𝑥) 
so ℎ′(𝑥𝑥) = 4𝑥𝑥𝑒𝑒𝑥𝑥2  

María got the answer 4𝑒𝑒2𝑥𝑥 in the calculator. Who had the right answer? Find the errors in the wrong 
answers and present the correct solution. 
Source: Finnish Board of Matriculation Examination, Finland, Spring, 2017. 
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 . Connections between concepts in students’ answers 
 

 
The students also proved to be able to represent mathematical situations in 

different ways, as seen in Exercise 3’s answers, when they used the three languages 
for representing each case (Table 3A). The competences of understanding why a 
mathematical idea is important, and when and where to use it, are also shown. For 
instance, in Table 3B, the student had to recognize that the idea of the relative 
maximum and minimum gave him more useful information than the fact that the 
derivative was zero at those points. Likewise, in Table 3C, the student explains why he 
decided to derivate the area, considering the given problem. 

 

 . Using different representations and understanding why and when mathematical ideas are 
useful. 

 
The ability to monitor their work and the ability to know when and how a 

procedure is correct are closely related. Students expressed how they used tools such 
as the sign chart to review their work:  “A sign chart of the first derivative is made to 
see which critical number is the minimum” (S15, E 16). The chart was used in 
Exercises 14 and 16. Moreover, the solutions also showed that the students were able 
to identify and name the misapplied rules in Exercises 17: “In the case of Daniel, the 

 
 
 
 
 
 
 
 (S10, E3) 

 
𝑓𝑓′(𝑥𝑥) = 0 𝑖𝑖𝑓𝑓 𝑥𝑥 < −3 means that “for 
all numbers less than 3 the function is 
constant.”  
                                                                       
  
                            
       (S4, E14) 

 
“Derive the formula of the 
function of the area to 
determine the relative 
maximums or minimums 
that will solve the problem.” 
 
(S1, E16) 

A B C 

 
 
 
 
 
 
 

                                                                         (S4, E3) 

“The points x = -1 and x = 2 are 
critical, that is, the graph 
changes monotony (the slope is 
zero), it is a peak (a relative 
max or min).”  (S4, E14) 

“It is necessary to minimize the area 
of the cylinder, which would be 
equivalent to the amount of 
material needed. This area is given 
by  𝐴𝐴 = 2𝜋𝜋𝑖𝑖2 + 2𝜋𝜋𝑖𝑖ℎ.”  (S10, E16) 

A B C 

“At points 
where there is 

inevitable 
discontinuity or 

there is no 
general limit.” 
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error is that he derived a composition of functions without using the chain rule” (S10, 
E17). They were also able to correct those errors, as shown in Table 4.  

 . Knowing when a procedure is correct in a student’s answer 

 
 

Procedural fluency  

Procedural fluency is perhaps the most-practiced skill in mathematics classes. Many 
exercises, for example, those concerning limits and derivatives, consist of doing 
calculations and procedures. However, in the languaging exercises presented in this 
article, there was no need to repeatedly perform calculations or procedures. 
Therefore, the procedural fluency ability was reflected in the students’ responses as 
calculations supporting the explanations and solutions (Table 5A) or in their 
evaluations of procedures developed by others and in showing the correct way to 
perform a procedure (Table 5B).  

 . Procedural fluency in students’ answers 

 

Strategic competence 

Strategic competence was visible when students used strategies to prove that a point 
was a maximum or minimum using the first derivative test (Table 6A) or the concavity 
test ( Table 6B). This shows that they know multiple solution strategies and can select 

“5) substitute the data of the 
auxiliary [equation] and 
derive the equation 6) obtain 
the critical numbers and 
confirm with the sing table.” 

                (S14, E16)                                             

(S10, E17)                

A B 

                                        (S2, E17) 

→ (𝑒𝑒𝑥𝑥)2  is the correct way 
→ The power rule was not 
 followed (power  
properties)  
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the best one or the one they feel most confident using; it means they are flexible about 
which approach to follow 

 .  Examples of different solution strategies in the students’ answers 

On a questionnaire given to the students (see Alfaro, 2018 for more details), they 
said that they were not used to providing explanations and justifications, meaning 
that those tasks were novel situations for them. Still, they were able to accomplish 
them, as shown in  Table 3C and  Table 6B.  

Adaptive reasoning 

Adaptive reasoning was exemplified in the ability to give informal explanations or 
justifications. The students provided explanations for the cases in which the function 
was not differentiable (Table 7A) when they interpreted the characteristics of a 
function ( Table 7B), and in processes, they used to solve the optimization problem ( 
Table 7C). In addition to explaining, the students resorted to theory, using definitions 
and rules to add validity to their claims ( Table 7D). 

“Obtain the critical numbers and confirm with the sign 
chart. The derivative is useful for finding relative 

maximum and minimum points”. 

(S14, E16) 

“If we derive once again, the second derivative allows us 
to analyze whether the function is minimized or 

maximized depending on what the statement asked 
for.” 

“If it is positive”           “If it is negative” 

(S13, E16) 

A B 
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 . Adaptive reasoning skills in students’ answers 

In the previous sections, the students’ answers to the languaging exercises reveal 
some of the mathematical-proficiency features described by Kilpatrick et al. (2001). 
By using skills from the different strands in a variety of tasks, students improve their 
performance in competencies essential to successful mathematical learning. 

4.2 Evidence of students’ mathematical thinking about derivatives 

To analyze the students' mathematical thinking when solving the exercises, we 
considered the derivative-related content in the curriculum for Calculus I at the 
University of Costa Rica. We identify the knowledge about derivatives that students 
understood and the misconceptions they had about some mathematical concepts. 

Students’ knowledge about derivatives  

There were mathematical concepts that the students understood and explained 
correctly. For the topic of differentiability, 5 out of 17  students showed that they were 
able to identify that a derivative does not exist in 𝑓𝑓(𝑥𝑥) = √𝑥𝑥3 , 𝑖𝑖𝑖𝑖 𝑥𝑥 = 0 because the 
tangent line at that point is vertical: “At the points where the tangent line is vertical 
so the slope is undefined” (S4, E3). Another five students identified the situation 
correctly but had some conceptual errors when explaining it. In another case, 16 of 17 
participants correctly explained that a reason for the function not being differentiable 
was the discontinuity, as explained by S10, “at points where the derivative is not 
continuous, because if it is not continuous it is not derivable” ( E3), or in other words, 
when “the lateral limits do not coincide” (S2, E3). These examples suggest that the 
students can express, in NL, the cases where a function is not differentiable. Later, we 

A “In the points where the derivative tends to +∞since this would mean a perpendicular tangent 
line, which does not exist.”                                                                                      (S10, Exercise 3) 

B 𝑓𝑓 is 
continuous 

- “It does not have vertical asymptotes” (S4)
- “The graph does not have gaps or peaks; it is a continuous function” (S1)
- “f is continuous if it has no gaps in its graph and there are no numbers that do
not have an image” (S16)
- “Any value that is used will serve to find values” (S13)
- “Differentiable function” (S3)
(E14)

C “Understand that when talking about cylinder dimensions we relate it to the area of this” 
        (S12, E14) 

D 
“María, Daniel failed to derive f (x) and substitute it in g '(x), on the other hand, Josué lacked to 
resolve the property of the exponents, when power is raised to another power the exponents 
multiply”                                                                                                            (S13, Exercise 17) 
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will see that they had some misconceptions regarding the same topic when using SL. 
In addition, 9 out of 17 students were able to recognize, in NL and PL, how the 

derivative affects the shape of a graph. They correctly interpreted six or more of the 
features given in SL, including the lim

𝑥𝑥→+∞
𝑓𝑓(𝑥𝑥) and the intervals of monotony and 

concavity. 
On the other hand, students were also successful at interpreting a statement of the 

optimization problem. They were able to recognize the variables and formulas as well 
as understanding the aim of the exercise. Fourteen out of seventeen students 
identified the area as the function to be minimized (see Table 3C) and the volume as 
the auxiliary equation used to clear a variable and replace it in the original equation 
so that it is stated in terms of a single variable, as shown in Table 5A.  

Finally, the students showed the ability to identify and explain errors in the 
solution of a derivative that involved the composition of two functions, one 
exponential and the other quadratic, through a combination of NL and SL. One of the 
errors was related to the performance of the chain rule. For that, students wrote 
“ℎ′(𝑥𝑥) ≠ 𝑔𝑔′(𝑓𝑓(𝑥𝑥))” (S4, E17) or “Daniel forgot to multiply by 𝑓𝑓′(𝑥𝑥)” (S14, E17). Other 
students (5 out of 17) attributed the error to how the composition of functions had 
been performed, remarking that first one must compose and then derive. In this way, 
they showed they were aware of the order of the composition despite it not being the 
source of the mistake. The other error was about the power rule, and it was also 
explained in both NL and SL. Answers like “the same base is left, and because it is 
multiplication, the exponents are added” (S6, E17) or “Josué's error is found in that 
(𝑒𝑒𝑥𝑥)2 is not 𝑒𝑒𝑥𝑥2, but 𝑒𝑒2𝑥𝑥” (S10,E17) are examples of the ways students explained the 
error, showing that they recognized the mistake and also knew the way to solve it. 

Misconceptions about mathematical concepts 

Analyzing the students’ answers, we found misconceptions related to the use of 
symbols, conceptual understanding, and procedure. Regarding the use of symbols, the 
students’ solutions showed a lack of rigor when writing mathematical symbols, for 
example, omitting “𝑓𝑓(𝑥𝑥)” before the formula of a function or when writing a limit. The 
lack of rigor could also be found in the items left out of the optimization problem. The 
students did not consider the domain of the optimization function as necessary and 
omitted the prove that the point found was effectively a minimum point, as 
established by the problem. Another aspect left aside by 10 of 17 students was to 
determine both dimensions (height and radius) as requested in the statement; they 
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only found the value of one variable. This demonstrates that the students did not read 
carefully or were only solving the problem mechanically. 

More profound misconceptions related to the understanding of functions, algebra, 
derivatives, and continuity are also evident. For instance, in Example A in Table 8, 
there is an algebraic mistake: Because the second fraction is not defined, the 
denominator will be zero. The example in Table 8B shows a mistake related to the 
definition of a function: The expressions 𝑥𝑥 = 𝑥𝑥2 and 𝑥𝑥 = −𝑥𝑥2 + 8 are equations and 
do not define an association rule of a function. Additionally, the choice of the point 
𝑥𝑥 = 𝑥𝑥0 does not indicate a specific value, so it could be assumed that the discontinuity 
would be fulfilled in any value that is assigned to 𝑥𝑥0. However, for 𝑥𝑥 = 2 and 𝑥𝑥 = −2, 
the given piecewise function would be continuous, contradicting what they intended 
to exemplify. S16 and S2 both gave a function continuous in all its domain as an 
example of a discontinuous function in Figure 4C. Other misinterpretations were 
related to considering the possibility of a function with vertical segments, writing 
“vertical function” (S5, E3), or “the function will be a vertical line” (S17, E3).   

Additionally, there were errors such as the direct association of derivatives with 
the tangent line, where the students use phrases like “the derivative was vertical” (S9) 
when actually the line was the one that was vertical at the point 𝑥𝑥 = 0, not the 
derivative.  

 . Students’ mistakes in SL 

On the topic of differentiable functions, there were students who used the 
contrapositive of the rule “if a function is differentiable, then it is continuous” 
correctly, using NL in Exercise 3. However, when using or interpreting SL in Exercise 
14, they made the false assumption that if the function is continuous, then it is 
differentiable. They also wrongly assumed that a continuous function does not have 
peaks, which could be influenced by the previous idea related to differentiability. 

 There were also misconceptions associated with the false assumption that all the 
points where the derivative is zero are maximum or minimal points before verifying 

 (S7, E3)  
 (S14, E3) (S16 

S2, E3) 
A B C 
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the change in monotony. For instance, in E14 S16 wrote, “all the numbers less than -
3 are minimums because the derivative is zero,” and in this case, the interval ]−∞,−3[ 
corresponds to a constant segment. It is interesting how the student could decide that 
those points were minimums and not maximums when actually the function was 
constant. This constant section of the graph was also the most challenging feature for 
the students to draw. Six out of seventeen were not able to represent it correctly, 
drawing the segment as growing (S14, E14) or ending the sketch in 𝑥𝑥 = −3. On the 
other hand, plotting the concavity changes in the cases where there were no changes 
of monotony, as, in point  𝑥𝑥 = 5 shown in Table 9B, was also difficult for the 
participants. 

 . Students’ difficulties in sketching the function (A: S14, B: S10) 

These examples show that students were not conscious of the consequences of 
misusing SL, that they had trouble using it for representing functions with specific 
characteristics, and had difficulty translating this language into NL. Also, they did not 
differentiate between mathematical objects, such as between a function 
correspondence rule and an equation or the derivative and the tangent line. They did 
not consider the basic rules for defining a fraction or connect the expressions in SL to 
an accurate graphical representation. 

5 Discussion 

The first university courses in mathematics, such as calculus, represent one of the 
most significant challenges for students. Learning at the university level requires the 
students to have conceptual understanding, skills to perform algebraic procedures, 
the ability to establish connections between concepts, and complex mathematical 
thinking. Previous studies suggest that representing mathematical concepts in 

A B 
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different modes is essential in the meaning-making process (Schleppegrell, 2010). A 
concept such as the derivative, which can be defined from its analytical form as a limit, 
geometrically as the slope of the tangent line to a curve, or in physics as the rate of 
change at which a particle moves (Kaplan et al., 2015), must be studied using different 
representations.  

The analysis of the languaging exercises answers presented in this paper made it 
possible to observe that the use of NL, PL, and SL favored the practice of four of the 
skills defined by Kilpatrick et al. (2001) as needed for learning mathematics. 
Conceptual understanding was the skill with the most features identified in the 
students’ answers, namely, identifying, making, and verbalizing connections between 
concepts and understanding why a mathematical idea is important and why and 
where to use it. Procedural fluency was mostly seen supporting explanations given in 
NL or PL. Providing explanations and justifications in NL were the principal form in 
which adaptive reasoning was shown. The students needed to provide them in all the 
exercises despite the fact they were not used to doing so, which in fact relates to the 
strategic competence skill of solving novel situations.  

The results also demonstrated students’ thinking about the mathematical concepts 
involved and revealed some difficulties and misconceptions they made. Considering 
the strategies that they used to solve the tasks, the use of the variation tables stands 
out. They were used as an auxiliary resource in Exercise 14 as a summary table of the 
characteristics of the function for graphing and in Exercise 16 to perform the test of 
the first derivative. Another resource used by most of the students in Exercise 16 was 
the auxiliary equation. In this same exercise, most students were able to understand 
the problem and to identify the respective formulas of area and volume to 
differentiate. This result differs that of from Klymchuk et al. (2010), who categorized 
students’ difficulties of in this type of problem as difficulties related to understanding 
the problem and difficulties related to the identification and usage of the formula. A 
possible explanation for this is that the students at the University of Costa Rica were 
already familiar with geometric optimization problems.  

Regarding the difficulties and misconceptions observed, some were consistent 
with previous studies, such as an incorrect association of derivatives with the tangent 
line (Park, 2015), difficulties with the chain rule (Maharaj, 2013), and problems 
understanding the vertical tangent line and graphing an increasing upside-down 
function (Baker et al., 2000). Moreover, there were other problems identified, for 
instance, the lack of rigor with which students wrote mathematical expressions, which 
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caused them to write mathematically ill-defined statements. Furthermore, phrases 
like “vertical function” indicated conceptual errors related to the definition function. 
On the other hand, the assertions that continuous functions have no peaks and that 
all points where the derivative becomes zero are minimal suggest that students were 
not aware of the conditions necessary to make such conclusions. 

The experience of introducing languaging exercises in a calculus course for 
engineering students aimed to give them the opportunity to participate in the 
construction of their knowledge, for example, by asking for explanations using their 
own words. The exercises forced them to think instead of mechanically solving. 
Furthermore, the discussions and doubts that arose from the exercises provided 
valuable information about general misconceptions and the way students thought, for 
the teachers and the students themselves. These are not always possible to obtain 
when the class only focuses on developing procedural skills. The use of different 
languages was crucial to promoting the different competences, since each language 
plays a role in the conceptualization of problems (Schleppegrell, 2010) and the 
construction of meanings. 

The results of this research highlight the importance of using different languages 
in the study of mathematical concepts. This is because it promotes essential 
competencies for learning mathematics and is a powerful instrument to observe 
students’ thinking and identify misconceptions and gaps in their knowledge. 
Additionally, this study proved that it is possible to use this approach at the university 
level and in this way, address the problems of transition from school to university 
mathematics. Due to the small sample used in this study, it is not possible to 
generalize the results. However, they provide a valuable panorama of how this kind of 
exercise can be implemented and its utility in understanding and promoting students’ 
comprehension of mathematical concepts. Further research could be conducted to 
investigate how or if the use of different languages affects students’ performance in 
mathematics and study other possible ways of including this kind of exercise in 
evaluations.  
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