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Design and evaluation of practice-oriented materials 

fostering students’ development of problem-solving 

competence: The case of working backward strategy 

Ana Kuzle 

University of Potsdam, Germany 

In a design-research project on problem-solving, theory-based and practice-

oriented materials were developed with the goal of fostering systematical 

development of students’ problem-solving competence in a targeted manner by 

learning heuristics. Special attention was given to working backward strategy, 

which has been shown difficult for students to learn and use. In the study, 14 Grade 

5 students participated in explicit heuristic training. The results show that even 

though the students intuitively reversed their thought processes before the explicit 

training, they experienced difficulties when solving complex reversing tasks, which 

improved considerably after explicit heuristic training. Thus, the study results 

showed that the developed materials using design-based research-approach 

promoted the development of students’ flexibility of thought when problem-

solving by working backward. At the end of the paper, the results are discussed with 

regard to their theoretical and practical implications.  

1 Introduction 

Problem-solving is a binding process standard in different educational systems (e.g., 

Finnish National Board of Education [FNBE], 2004, 2014; National Council of 

Teachers of Mathematics [NCTM], 2000; The Standing Conference of the Ministers 

of Education and Cultural Affairs of the Länder in the Federal Republic of Germany 

[KMK], 2005) that is often neglected in school mathematics (e.g., Gebel & Kuzle, 

2019). The plethora of research on problem-solving undergoing since the 1970s 

identified pivotal practices for problem-solving instruction (e.g., Grouws, 2003; 

Kilpatrick, 1985; Lester, 1985). Despite more than five decades of this accumulated 

knowledge, both empirical studies, as well as large-scale studies (e.g., PISA, TIMS 

study), reported that students are often unable to solve problem tasks. Moreover, 

teachers lack practical teaching materials to foster students’ development of problem-

solving competence and at the same time to consolidate their competence in the area 

(Gebel, 2015; Gebel & Kuzle, 2019; Kuzle & Gebel, 2016). In the context of this reform 

agenda, collaborative work between educational researchers and practitioners 

working on issues of everyday practice is crucial in order to overcome the gap between 

theory and practice (Jahn, 2014). Design-based research (DBR) as a research 
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paradigm that brings the two poles – theory and practice – together, may help 

overcome this gap (Wang & Hannafin, 2005). In order to close the above-described 

problem-solving gap, theory-based and practice-oriented materials for middle-grade 

students were developed in the SymPa project (Systematical and material-based 

development of problem-solving abilities) in accordance with DBR methodology 

(Gebel, 2015; Kuzle, 2017a, 2017b; Kuzle & Gebel, 2016). The goal of the SymPa 

project was to promote the development of problem-solving abilities in Grades 4-6 

(Gebel, 2015; Kuzle, 2017a, 2017b; Kuzle & Gebel, 2016).  

In design research, depending on the existing object of investigation and the 

associated restrictions, different design aspects can be focused on that consequently 

allow to understand possible connections with regard to the fulfilment of the function 

of the design in a multifaceted way (Jahn, 2014). According to Collins, Joseph, and 

Bielaczyc (2004), different aspects are relevant for the multi-perspective educational 

design analysis: cognitive level, interpersonal level, group or classroom level, resource 

level, and institutional or school level. During the first seven DBR cycles within the 

SymPa project, the project evaluation focused on developing suitable and sustainable 

problem-solving materials for their implementation in practice (Kuzle, 2017b; Kuzle 

& Gebel, 2016) as well as on identifying the design elements contributing to the 

improvement of the problem-solving competence (Kuzle, 2017a). In other words, the 

resource level of the educational design was in the foreground of the analysis (Collins 

et al., 2004). At the same time, the project was analyzed with respect to factors, and 

conditions that favored and hindered the implementation of the materials in practice 

on the basis of two DBR cycles (Kuzle, 2017b). Thus, the institutional level of the 

educational design was analyzed (Collins et al., 2004). Hence, the first phase of the 

project had more practical output within educational design research.  

Relating to the motive of enhancing the quality of research findings, the focus of 

this paper lies on another aspect relevant to educational design research, namely on 

the cognitive level (Collins et al., 2004). Specifically, the question about how the 

design of theory-based and practice-oriented materials for systematical development 

of mathematical problem-solving competence as well as on how explicit heuristic 

training organized around these materials affect the thinking and learning of 

participants over time, and subsequently their increase of knowledge in the context of 

mathematical problem-solving. This is exemplarily shown with respect to the strategy 

of working backward, which has been shown difficult for students to learn and use 

(Aßmus, 2010a, 2010b), albeit its potential in mathematics lessons and importance in 
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everyday life. Through reversible thinking, an individual is capable of seeing things 

not only from one single perspective but also its reversal. It may also minimize both 

errors in every decision as well as the error of answers as students tend to review their 

answers by reversing the result to the initial value of the problem. Lastly, thinking 

reversible is one of the primary requirements to solve mathematical problems (Bruder 

& Collet, 2011; Krutetskii, 1976; Lompscher, 1975).  

In the following sections, I outline relevant theoretical and methodological 

underpinnings for systematical development of problem-solving competence in the 

context of working backward, before showing how these got integrated into students’ 

problem-solving material. On the basis of the educational design research, the 

development of students’ ability to use the strategy of working backward when 

problem solving is presented. In the last section, I discuss the findings with regard to 

their theoretical and practical implications. 

2 Theoretical foundation 

2.1 Mental agility 

Schoenfeld (1985) defined the concept of a problem as a subjective assessment:  

The difficulty with defining the term problem is that problem solving is relative. 
The same tasks that call for significant effort from some students may well be 
routine exercises for others, and answering them may just be a matter of recall 
for a given mathematician. Thus, being a ‘problem’ is not a property inherent 
in a mathematical task. Rather, it is a particular relationship between the 
individual and the task that makes the task a problem for that person. (p. 75) 

Similarly, Bruder and Collet (2011) define the concept of the problem as person-

dependent. For them, a task becomes a problem for an individual when it seems 

unfamiliar, and when a promising solution is not immediately at hand. In that 

manner, problem-solving refers to a directed cognitive process in which the problem 

solver determines how to overcome an individual barrier resulting from bringing the 

initial state to the target state (Bruder & Collet, 2011; Schunk, 2008).  

Problem-solving competence relates to cognitive (here heuristic), motivational 

and volitional knowledge, skills and actions of an individual required for independent 

and effective dealing with mathematical problems (Bruder & Collet, 2011). 

Accordingly, each individual must develop the ability to solve problems independently 
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(e.g., Gebel & Kuzle, 2019; Stanic & Kilpatrick, 1989), and should learn approaches 

(heuristics) for solving mathematical problems and how to apply them in a given 

situation, develop reflectivity on own actions, and develop willingness to work hard 

(KMK, 2005; NCTM, 2000). 

Research (e.g., Carlson & Bloom, 2005; Schoenfeld, 1985) showed that problem-

solving activities in mathematics require skills and understanding that are often not 

readily apparent to novice problem solvers compared to experienced problem solvers. 

Especially, intuitive problem solvers possess particular mental agility (Liljedahl, 

Santos-Trigo, Malaspina, & Bruder, 2016), which is fundamental to mathematical 

problem-solving. Lompscher (1975) defined the concept of mental agility as a 

performance characteristic of the individual, which provides both quantitative as well 

as qualitative characteristics, which influence the intellectual activity. By this, 

Lompscher (1975) understands the ability to analyze the objective reality of the 

subject. Consequently, mental agility develops from this very activity which the 

subject exercises in the mental process in interrelation with objective reality. 

Accordingly, the mental mastery of the performance requirements of objective reality 

is expressed through the abilities of the subject. Lompscher (1975) described the 

mental agility through three subdomains. First of all, the mental operation is 

considered, which contains solidified action sequences. Processed knowledge forms 

networks in the long-term memory and, when applied, characterizes its quality 

(course quality). The aforementioned forms the second subdomain of mental agility 

and is supplemented by the willingness to actively apply one’s knowledge (attitude) 

(Lompscher, 1975). Here, I mainly limit myself to the first two subdomains.  

Mental operations concretize every cognitive activity. Regardless of the object of 

the action – the goal or the content of the action – they form complex sequences of 

operations. This results in mental operations, among other things, during the 

examination of things and characteristics as well as in problem-solving situations 

(Lompscher, 1975). In addition, every mental action is characterized by content (e.g., 

concepts, connections, procedures), process (e.g., systematic planning, 

independence, accuracy, agility), and partially conscious goals and motives. One of 

the most important mathematically relevant progression qualities is mental agility. 

According to Lompscher (1975), “flexibility of thought” expresses itself 
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… by the capacity to change more or less easily from one aspect of viewing to 
another one or to embed one circumstance or component into different 
correlations, to understand the relativity of circumstances and statements. It 
allows to reverse relations, to more or less easily or quickly attune to new 
conditions of mental activity or to simultaneously mind several objects or 
aspects of a given activity. (p. 36) 

The flexibility of thought is expressed by one’ ability to: 

1.  reduce a problem to its essentials or to visualize it by using visual and 

structuring aids, such as informative figures, tables, solution graphs or 

equations (reduction), 

2.  reverse trains of thought or reproduce these in reverse, such as by working 

backward (reversibility), 

3.  simultaneously mind several aspects of a given problem or to easily recognize 

any dependencies and vary them in a targeted manner (e.g., by composing and 

decomposing objects, by working systematically) (minding of aspects), 

4.  change assumptions, criteria or aspects in order to find a solution, such as by 

working forward and backward simultaneously or by analyzing different cases 

(change of aspects), and 

5.  transfer an acquired procedure into another context or into a very different one 

by using analogies, for instance (transferring). 

These manifestations of mental agility can be related to heurisms, which are 

known from the analyses of Pólya’s approaches (1945/1973). Heuristics can be 

defined “as kinds of information, available to students in making decisions during 

problem solving, that are aids to the generation of a solution, plausible in nature 

rather than prescriptive, seldom providing infallible guidance, and variable in results” 

(Wilson, Hernandez, & Hadaway, 1993, p. 63). Moreover, not only the knowledge of 

different heuristics (flexibility of thought) is needed when problem-solving, but also 

self-regulatory abilities which evolve gradually through a 5-phase model 

(Zimmerman, 2002). It has been a long-term goal of mathematics educators to 

provide students with the skills necessary for success in problem-solving.  

2.2 Reversibility 

Problem-solving by working backward describes the ability to reverse trains of 

thought or reproduce these in reverse (e.g., Liljedahl et al., 2016; Pólya, 1945/1973). 

Other than when working forward, the target state forms the starting point in the 
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solution process, whereas the calculated value forms the initial value of the problem. 

Thus, working backward leads to the entire thought process being reversed, since the 

task no longer corresponds to working forward (changing the direction of processing) 

(Bruder & Collet, 2011). Aßmus (2010a, 2010b) distinguished between two aspects of 

reversibility. On the one hand, the operation as such can be reversed (e.g., ‘+’ becomes 

‘–’), and, on the other hand, the sequence of the task processing can be reversed. 

The ability to independently reverse trains of thought when working on 

mathematical problems has been recognized as one of the indicators for identifying 

mathematically gifted children (Käpnick, 1998). Consequently, the research on 

reversibility during problem solving has been primarily done with gifted and talented 

students. For instance, while working with potentially talented primary grade 

students, Aßmus (2010a, 2010b) investigated performance in heterogeneous primary 

mathematics lessons (Grade 2 and Grade 4) when solving reversing tasks. The results 

showed that the basic understanding of reversal was not present from the beginning. 

While many gifted Grade 2 students still had problems, on average, they were much 

more successful than the average children of the same age. For instance, no student 

from a control group was able to solve a problem with an unknown initial state, 

whereas at least 9% of the potentially gifted Grade 2 students (N = 182) succeeded in 

completing the tasks correctly, and in 35% of cases reasonable solution approaches 

could be identified. Symbolic tasks were generally processed backward more 

intuitively than word problems in which starting from an unknown initial state, 

various transformations needed to be performed in order to determine the initial 

state. Difficulty in the processing of the latter was maintaining the correct reversal of 

the operations or taking all operations into account when reversing. 

On the other hand, Grade 4 students were more successful, with 36% of students 

reaching the correct solution (Aßmus, 2010b). Thus, reversibility was differently 

pronounced by primary grade students. Aßmus (2010b) hypothesized that this ability 

develops in the course of years with respect to average students (Aßmus, 2010b), 

though it may be more characteristic for gifted students (Aßmus, 2010a, 2010b).  

The latter finding was supported by Amit and Portnov-Neeman (2016) who 

examined the effect of explicit teaching of problem-solving strategies, with a special 

focus being given to working backward strategy, on the ability of mathematically 

talented Grade 6 students to recognize and solve reversing tasks. The group that 

received explicit training showed higher results than the control group. Here, the 

students from the experimental group showed a better, clearer understanding of the 



KUZLE (2019) 

34 

 

strategy, and the strategic use improved over time (Amit & Portnov-Neeman, 2016). 

Moreover, they were more much resourceful in their solutions when solving a wide 

variety of reversing tasks. Amit and Portnov-Neeman (2016), therefore, confirmed the 

results of Aßmus (2010a, 2010b). 

Whereas Aßmus (2010a, 2010b), and Amit and Portnov-Neeman (2016) focused 

on reversible thinking ability of gifted and talented students in the context of 

mathematics problem solving, Gullasch (1967) examined the relationship between 

mathematical problems and mathematical ability of Grade 7 students. His study 

revealed a high correlation between the reversibility of the mental activity, the level of 

school performance, and the ability to abstraction. Accordingly, the reversal of 

solution paths sets a basic level of mental activity.  

2.3 Learning problem solving 

In the field of problem-solving, there are two different approaches to learning 

heuristics. In an implicit heuristic training, it is assumed that the students internalize 

and unconsciously apply strategies they have learned through imitating practices of 

the teacher, and through sufficient practice. On the other hand, explicit heuristic 

training refers to making a given heuristic a learning goal, which is practiced step by 

step (e.g., Schoenfeld, 1985). Bruder and Collet (2011) pursued an explicit heuristic 

training focusing around Lompscher’s (1975) idea of “flexibility of thought” in 

combination with self-regulation (Zimmerman, 2002), which consisted of the 

following five phases: 

1. Intuitive familiarization: The teacher serves as a role model when introducing 

a problem to the students. This is achieved through moderation of behaviors by 

engaging in self-questioning (e.g., “What is the problem asking for?” “What 

information am I given?” “Am I headed in the right direction?”) pertaining to 

different phases of the problem-solving process (before, during, and after) 

(Kuzle & Bruder, 2016). At this point, the heurism in focus is not specified. 

2. Explicit strategy acquisition: The students get explicitly introduced to the 

heurism in focus by reflecting on the first phase, namely the particularities of 

the heurism get discussed, and the heurism is given a name. Here a prototypical 

problem for the heurism in focus is used so that the students can more easily 

recognize and use the heurism in future tasks. 
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3. Productive practice phase: The students practice the newly acquired heurism 

by solving different problems. These do not reproduce type problems, but rather 

expand the possibilities from the first two phases. Differentiation is a guiding 

concept so that students can choose at what cognitive level they want to work 

and adapt the observed learning behavior.k 

4. Context expansion: The students practice the use of heurism in focus 

independent of a mathematical context. In that way, the students learn to 

flexibly, intuitively and independently of a context use the heurism in focus. 

6.  Awareness of own problem-solving model: The students reflect on their 

problem-solving process and document it. 

Untrained problem solvers are often unable to consciously access the above-

outlined flexibility qualities (Bruder & Collet, 2011; Liljedahl et al., 2016). In their 

research at the lower secondary level, Bruder and Collet (2011) were able to show that 

less flexible students (e.g., students with difficulties in reversing thought processes or 

transferring an acquired procedure into another context) profit from explicit heuristic 

training. Concretely, they were able to solve the problems just as well as more flexible 

students, who solved the problems intuitively. Thus, the problem-solving ability can 

be acquired through the promotion of manifestations of mental agility (reduction, 

reversibility, minding of aspects and change of aspects) in combination with self-

regulation. 

2.4 Design-based research in the context of SymPa project 

Learning is a complex process, which depends on many factors, and thus, is difficult 

to control. Design-based research (DBR) as a research paradigm offers the 

opportunity to develop innovative teaching practices, and to develop context-sensitive 

learning environments. According to Wang and Hannafin (2005), design-based 

research is “a systematic but flexible methodology aimed to improve educational 

practices through iterative analysis, design, development, and implementation, based 

on collaboration among researcher and practitioners in real-world settings, and 

leading to contextually-sensitive design principles and theories” (p. 6-7). Hereby, they 

especially underline the flexible character of DBR and the importance of synergy of 

theory and practice, in contrast to other research paradigms.  

The Design-Based Research Collective ([DBRC], 2003) lays down the cyclical and 

continuous nature of DBR comprising of design, enactment, analysis and re-design 
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phase (see Figure 1). Under design is theory-driven development of a teaching-

learning environment or a material understood, which will be implemented in the 

phase of enactment. In the next step, designed teaching-learning environment or 

material is analyzed in the evaluation phase. The improvements get then implemented 

in a re-design phase, and the cycle starts from the beginning on. In that manner, the 

result of any DBR approach is the development of new knowledge or suggestions on 

how to improve educational practice(s), such as exploring possibilities for creating 

novel learning and teaching environments, developing contextual theories of learning 

and instruction, advancing and consolidating design knowledge, and increasing the 

capacity for educational innovation (e.g., Collins et al., 2004; DBRC, 2003). 

 

 DBR cycle. 

During the first seven DBR cycles of the SymPa project, the evaluation focused on 

analyzing to what extent are theory-based and practice-oriented problem-solving 

materials suitable and sustainable for their implementation in practice (Kuzle & 

Gebel, 2016) as well as on identifying the design elements contributing to 

improvement of the problem-solving competence (Kuzle, 2017a). Kuzle and Gebel 

(2016) reported that it was possible to develop a curriculum that met the local 

demands which enabled the implementation of problem-solving in practice. As a 

result, context-related design principles for the development of problem-solving 

material for Grade 6 students were developed (Kuzle, 2017a). The results showed that 

students needed an emotional incentive (hereby the figures) in order to be willing to 

solve problems and to prompt their reflective behaviors. Transparency of the material 

structure supported students’ independent work, whereas material design 

(differentiation, transparent material structure with explicit reflections) was an 
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important factor in the development of self-regulatory processes when problem-

solving. Lastly, various design elements (text information, sample problem) allowed 

for explicit strategy acquisition and 3 to 4 problems seemed optimal for flexibility use. 

Moreover, Kuzle and Gebel (2016) demonstrated that DBR paradigm allowed creating 

novel teaching environments in which theory and practice were not detached from 

one another, but rather complemented each other (resource level of the educational 

design) (Collins et al., 2004). At the same time, the design was analyzed with respect 

to different objectives (e.g., language, level of performance, learning pedagogies) and 

subjective factors (e.g., school and personal influences) which inhibited full-

implementation of the curriculum (institutional level of the educational design) 

(Collins et al., 2004). However, how these materials affect students’ thinking and 

learning over time and subsequently their increase of knowledge in the context of 

mathematical problem solving remained open (cognitive level of the educational 

design) (Collins et al., 2004).  

3 Research questions 

On the basis of the above theoretical considerations and empirical results, the 

following research questions guided the study on problem-solving by working 

backward: 

1. How do Grade 5 students solve reversing tasks before and after explicit heuristic 

training? 

2. To what extent are Grade 5 students able to solve reversing tasks by working 

backward before and after explicit heuristic training? 

4 Method 

4.1 Research design and sample 

For this study, an explorative qualitative research design was chosen. The study 

participants were Grade 5 students who showed interest in attending additional 

mathematics lessons on a voluntary basis that focused on problem-solving. In total 14 

students (nine girls and five boys) from one rural school in the federal state of 

Brandenburg (Germany) participated in the study, and thus attended explicit 

heuristic training on the working backward strategy. Their performance in regular 
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mathematics classes was good to very good. 

4.2 Context of the study 

The WoBa study (Problem Solving by Working Backward) was embedded in the 

SymPa project during which the students participated in explicit heuristic training 

which lasted about 7 months (see Figure 2). The explicit heuristic training took place 

once per week (45-minute lesson). During this period, the students received explicit 

problem-solving instruction pertaining to different heuristic auxiliary tools 

(informative figure, table), heuristic strategies (working systematically, working 

forward, working backward, analogy), and heuristic principles (composing and 

decomposing, invariance), which lasted two to three lessons per heurism. The lessons 

were taught by an experienced mathematics teacher.  

 

 Timeline of the SymPa project. 

During the explicit heuristic training, the students systematically learned 

heurisms using theory-based and practice-oriented materials (Kuzle, Gebel, & 

Conradi, 2017-2019) on the basis of the problem-solving teaching concept of Bruder 

and Collet (2011). The problem-solving material focusing on the working backward 

strategy is outlined below.  

In the phase of intuitive familiarization, the students are given a representative 

problem for the working backward strategy (see Figure 3), which is solved together 

with the teacher, who serves as a moderator. Here the imitation of teachers’ behavior 

takes place through self-questioning. 

Amit & Portnov-Naaman (2016); Assmus (2010); Fuchs (2006); Hasdorf (1976)

first school term second school term

SymPa starts
SymPa ends

pre-test post-test
WoBa-intervention

University of Potsdam | Department of 

Mathematics Education | Ana Kuzle
130.08.2018
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 Introduction task on the working backward strategy (Kuzle et al., 2017-2019). 

In the phase of explicit strategy acquisition, the working backward strategy gets 

formally introduced through a short student-centered information text (see Figure 4), 

and a partially worked out example (see Figure 5).  

 

 Information text on the working backward strategy (Kuzle et al., 2017-2019). 

 

 An example illustrates the working backward strategy (Kuzle et al., 2017-2019). 

In what follows, at least three reversing tasks of different cognitive levels are 

presented (productive practice phase). This allows differentiation, where each student 

solves as many problems as he or she can. In addition, problems from different 

mathematical content areas are covered to allow transfer (context expansion phase). 

3.2 Working backward 
3.2.1 Misplaced glasses 

 

 

 

 

a) What does Profi mean by that?  
b) How can he find his glasses again?  
 

What is working backward? 

Working backward is closely related to working forward, but runs in the other 

direction.  

Here we start from the target state and follow the path to the initial state.  

Questions, such as “What is wanted?”, "What do I know about what I am looking for? 

"What do I need in order to find what I’m looking for?” offer orientation. 
 

Example 

Probi found this riddle in a magazine: 

With a number between 1 and 9, six arithmetic tasks, starting 

with the upper result, are to be solved one after another in a 

clockwise direction in order to arrive at the final results of 136.  

 

 

 

 

 

3.2.2 5-Aunts 

Probi always gets candy from his aunts when he visits them. Each aunt gives him as 

much candy as he already has and one more. Probi has 5 aunts. After visiting all of 

them has 127 candies in his bag.  

a) How many candies did he have before visiting them? 
b) Have you been able to work backward on this task? Why did this strategy fit the 

task? 
c) What heuristic tools did you use? 

 

 

 

Oh Profi, where are your glasses? 

I don’t know. I must have misplaced them.  

I’ve been thinking the entire time about what I’ve done today.  

I’ll try out some numbers. 

That would take a really long time.  

What strategy did we (just) learn here? 

I would start with 136 and solve the task the other way round. 
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I’ve been thinking the entire time about what I’ve done today.  
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What strategy did we (just) learn here? 

I would start with 136 and solve the task the other way round. 
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Lastly, the tasks stipulate students to reflect on their problem-solving process (see 

Figure 6). 

 

 Further tasks with respect to the working backward strategy (Kuzle et al., 2017-2019). 

From a design perspective, two figures, namely Profi (shape of an exclamation 

mark) and Probi (shape of a question), are introduced to support students’ willingness 

3.2.2 5-Aunts 

Probi always gets candy from his aunts when he visits them. Each aunt gives him as 

much candy as he already has and one more. Probi has 5 aunts. After visiting all of 

them has 127 candies in his bag.  

a) How many candies did he have before visiting them? 
b) Have you been able to work backward on this task? Why did this strategy fit the 

task? 
c) What heuristic tools did you use? 

 

3.2.3 Number crusher  
 

 

 

The “Number crusher machine” processes the numbers 1, 2, 3, and so on. 

Even numbers are halved, uneven numbers are reduced by 1, e.g., 6 ® 3 und 5 ® 4. 

The output number is then put back into the „Input“ until 0 becomes the “Output”, 

e.g., 5 ® 4 ® 2 ® 1 ® 0. So for 5 you would beed four steps (®) to reach 0. 

Therefore, 5 is calles a 4-step number.  

a) Examine how many steps you need for other numbers to reach 0!  

 

b) How many 4-step numbers are there? List all of them.  
  

 
 
 
 
 

3.2.4 Cutting paper 

Profi and Probi play a game: Profi fold a piece of rectangular paper and then makes a 

straight cut. Probi only sees the end product and should find out how Profi folded 

and cut the paper.   

 

 

a) Find out how Profi folded and cut the paper.  
b) Did you work backward in part a)? Why?  
c) What other heuristic strategies would fit you approach in a)? 

 

3.2.5 Pouring water 

Probi suggest Profi a bet and gives him two buckets:  

„This is a 3-liter and a 5-liter bucket. They don’t have any markings. You can now pour 

as much water back and forth as you want until you have exactly 4 liters of water in 

the 5-liter bucket. I bet you a hot chocolate.“ 

a) Who will get the hot chocolate? Why?  

 

b) What heuristic tool did you use?  
c) Try the informative figure and the table.                                     

Which heuristic tool did you find best here? Why?  

Input Number crusher Output 

For this you can use one of the learned heuristic tools. 

Here by using a table, as a heuristic tool, 

can discover some interesting things. 

 

Try to be systematic!  

Think before you start solving the problem.  
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to work hard. While Probi asks questions and gets stuck like every novice problem 

solver, Profi represents an expert problem solver who offers support to novice 

problem solvers (i.e., students).  

4.3 Data collection instruments and procedure 

The study data consisted of (1) written data, (2) oral data, and (3) observations. (1) 

The written data were comprised of the students’ solutions to pre- and post-test, each 

containing three problems addressing different mathematical levels. The pre-test was 

issued in December before that explicit training on working backward strategy at the 

beginning of the year started, whereas post-test one month after the end of the explicit 

training (see Figure 2). The students were allotted 45-minutes for each test. Both tests 

contained partially similar tasks in order to be able to compare the students’ 

development of the working backward strategy use (see Table 1). The pre- and post-

test included two types of reversing tasks. On the one side, the tests included tasks 

with the unknown initial state. In this case, starting from an unknown initial state, 

various transformations and the final state are described, and the initial state needed 

to be determined. The complexity of tasks varied based on the number of different 

operations, namely one (‘Candy task’) and two (‘Four gates’ task’, ‘Devil’s task’) 

operations. On the other hand, the tests included tasks that required a flexible reversal 

of relations. Thus, tasks which cannot be solved by working exclusively by working 

forward or backward, but whose processing requires flexible handling of relations 

which are often reversed several times, provided that they are not only tried out 

(‘Circle task’, ‘Dogbone task’, ‘Rectangle task’). Additionally, the students reflected on 

different problem-solving strategies using reflection sheets at the end of explicit 

training.  

(2) For the purpose of gaining a detailed insight into students’ problem-solving 

processes, a brief interview (5-minutes) was conducted with four individual students, 

who were chosen on the basis of their results on the pre- and post-test. The following 

questions served as guidelines: “How did you come up with the solution?” “Do you 

think you could have solved solve the problem in another way?”  

(3) During the explicit training on the working backward strategy, the researcher 

observed the lessons and made observation notes. Multiple data sources were used to 

assess the consistency of the results, and to increase the validity of the instruments. 
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Table 1.  Pre- and post-test tasks. 

Pre-test tasks Post-test tasks 

Four gates’ task 
A man goes apple picking. To take his harvest to 
the town, he has to pass through four gates. At 
each gate, there is a guard and demands half of his 
apples and one more apple. In the end, the only 
thing left to the man is an apple. How many apples 
did he have at the beginning? 

 

Devil’s task 
The devil says to a poor man: “Every 
time you cross this bridge, I will 
double your money. But every time 
you come back, you have to throw 
eight thalers in the water.” When 
the man returned for the third time, 
he did not have a single thaler left. 
How many thalers did he have at 
the beginning? 
 

Candy task 
Marie gets a bag of sweets from her grandmother 
as a present. On the first day, she eats half of the 
sweets. On the second day, she eats half of the 
remaining sweets. Afterwards, she only had six 
sweets left. How many sweets were in the bag at 
the beginning? 
 

Dogbone task 
The dog wants to get to his bone. Unfortunately, 
the way is blocked by colored blocks. Can you bring 
the dog to his bone? Find a way. 

 
Circle task 
What are the numbers for the remaining pieces? 
Solve the calculation. 

 

Rectangle task 
The sides of the blue rectangle are a total of 40 cm 
long. The blue rectangle is to become two 
rectangles. The sides of the two rectangles should 
be 40 cm long in total.  
a. What side lengths can the two rectangles have? 
b. Can you find any other solutions? 
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4.4 Data analysis 

The analysis of the data was carried out in several steps. First, the data were examined 

with respect to used heurisms (1st research question). There was the possibility to 

solve the tasks with the help of working forward strategy (WF) or working backward 

strategy (WB). These could also have been processed without any specific strategy or 

not solved at all (NS). One coding was done per task, so that in the end, an overview 

was created, which reflected used problem-solving strategies of the respective 

student. The tasks were considered to be solved backward when the final result was 

recognized as the initial value, and the arithmetic operations of the task were correctly 

reversed (‘Four gates task’, ‘Devil’s task’, ‘Candy task’, ‘Circle task’). The ‘Rectangle 

task’ was also considered to have been solved backward, if it could be seen that the 

perimeter of the rectangle was divided by two and the result was distributed over the 

perimeter equation of a rectangle. The solution to the ‘Dogbone task’ was accepted as 

backward as long as it became clear that the block closest to the dog was moved. 

Subsequently, the inductive analysis of the problem-solving process was carried out 

by taking into account the different application performances of working backward 

strategy (2nd research question). In order to classify each student’s achievement, 

these were assigned to individual levels of working backward (see Table 2). This was 

again carried out per task, in order to evaluate each student’s progress in the project 

with respect to their ability to reverse trains of thought or reproduce these in reverse. 

Table 2.   A framework for different levels of working backward 

Levels of working backward Description of students’ behavior 

WB1 Students do not use the given target state as a starting value for the 
calculation. The required operations are not reversed.  

WB2 Students are able to use the given target state as a starting value. 
The required operations are not reversed. 

WB3 Students can correctly reverse the required operations. However, 
the task is not calculated to the end so that the correct result is not 
achieved. 

WB4 Students are able to work backward correctly. 

 

Some students’ solutions to the ‘Four gates task’ with assigned levels of working 

backward can be seen in Figures 7 to 9. 
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“At the beginning, he had 16 apples.” 

 One student’s solution performing on WB1 level. 

 

 
 
 
 
“I always calculated the double +1.” 
 

Response: “He had 31 apples at the beginning.” 

 One student’s solution performing on WB2 level. 

 

At the beginning he had 46 apples. 
1. gate: “46 - half - 1 = 22” 
 

2. gate: “22 apples - half - 1 = 10” 
 
 
 
3. gate: “10 apples - half - 1 = 4” 
 
4. gate: “4 apples - half - 1 = 1 apple” 
 

 One student’s solution performing on WB4 level. 

The students’ self-reflection on different problem-solving strategies were also used 

to interpret the results as well as individual interviews. The latter was needed to 

correctly comprehend students’ problem-solving processes.  
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5 Results 

5.1 Students’ strategies when solving reversing tasks 

In Table 3, it can be seen that the majority of the students intuitively used the working 

backward strategy on almost all pre-test tasks. One student only (#12) consistently 

used the working backward strategy on all three pre-test tasks. Additionally, two 

students (#5, #9) used the working forward strategy when solving the ‘Candy task’ 

and the ‘Circle task’. Two students (#7, #14) did not employ any strategies when 

solving the ‘Four gates task’ and the ‘Circle task’. 

Table 3.  Classification of the students’ solutions on the pre-test in relation to used heurisms (• ‘Four gates 
task’, • ‘Candy task’, • ‘Circle task’) 

Student 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

NS       •       •• 
WF     •    •   •••   
WB ••• ••• ••• ••• •• ••• •• ••• •• ••• •••  ••• • 

 

Similar results can be seen in Table 4 illustrating students’ strategies on the post-

test. Six students (#4-#9) employed the working forward strategy, whereas five of 

them when working on the ‘Dogbone task’. Thereupon, it can be deduced that the 

reversal of thought processes has not proved to be a useful strategy for all students 

with respect to the ‘Dogbone task’. Two students (#12, #13) did not employ any 

strategies when solving the ‘Devil’s task’ and the ‘Rectangle task’. Thus, after the 

explicit training, the majority of the students used the working backward strategy in 

most cases, and some were able to employ the most effective strategy for them.  

Table 4.  Classification of the students’ solutions on the post-test in relation to used heurisms (• ‘Devil’s 
task’,  ‘Dogbone task’, • ‘Rectangle task’) 

Student 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

NS            • •  
WF     •          
WB • • • • • • ••  •• •• •• •• • • • • • •  • • 

 

Though Table 3 and Table 4 illustrate students’ ability to (intuitively) reverse their 

thought processes when solving reversing tasks, there were differences on students’ 
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level of problem-solving by working backward which are reported on in the next 

section. 

5.2 Students’ level of working backward when solving reversing tasks 

Based on different application performances of the working backward strategy on 

both pre- and post-test, the students’ solutions were sorted into the appropriate levels 

of working backward. In that manner, a rough overview of the differentiated 

performance of each student was created (see Table 5). The performance of the 

students varied greatly, however, the majority (N = 11) were able to solve the ‘Candy 

task’ correctly (WB4), which could be solved by a simple reverse operation. The ‘Four 

gates task’ has shown to be more difficult for students. In total three students (#2, #4, 

#11) were able to solve the problem correctly (WB4) (see Figure 9), whereas eight 

students performed on WB1 or WB2 level (see Figure 7 and Figure 8). It may be that 

such poor performance was due to its complexity, as the task required two combined 

inverse operations. Nine out of fourteen participants were also able to work intuitively 

on the ‘Circle task’ performing on WB4 level, whereas two students were on WB2 level. 

Only one student (#14) was not able to solve the task. This symbolic task demanded 

not only the reversal of the existing operations but also an extension of the part-whole 

relation.  

Table 5.  Overview of students’ solutions on the pre-test in relation to levels of working backward (• ‘Four 
gates task’, • ‘Candy task’, • ‘Circle task’) 

Student 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

NS       •       •• 
WF     •    •   •••   
WB1   •  •    •    •  
WB2 • •    ••  •  •     
WB3   •            
WB4 •• •• • ••• • • •• •• • •• •••  •• • 

 

The students’ performance on the post-test was more homogeneous than on the 

pre-test (see Table 6). Each student solved at least one problem correctly using 

working backward strategy (WB4). The ‘Dogbone task’ was solved by six and three 

students performing on WB3 and WB4 level, respectively. The task demanded a high 

degree of mental agility as it was an open task, which can be solved with both working 

forward and backward strategy. The ‘Rectangle task’ was successfully solved by nine 
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students, whereas three students (#1, #4, #6) only showed rudimentary approaches 

to working backward (WB1). Compared to other tasks, it demanded geometric 

knowledge, namely calculating the perimeter of a rectangle and taking into account 

geometric ratio distribution. Despite the complexity of the ‘Devil’s task’ due to the two 

combined inverse operations, eight students were able to solve the problem correctly 

(WB4), and two performing on WB3 level. Still, one student (#12) was not able to 

solve this problem, and three students showed were rudimentary approaches (WB1 or 

WF). 

Table 6.  Overview of students’ solutions on the post-test in relation to levels of working backward               
(• ‘Devil’s task’,  ‘Dogbone task’, • ‘Rectangle task’) 

Student 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

NS            • •  
WF     •          
WB1 ••   •  •    •     
WB2               
WB3         •  •     
WB4  • • •• •  • •• •• • • • • • •• 

 

Lastly, Table 7 illustrates more closely the students’ performance on similar tasks, 

namely the ‘Four gates task’ and the ‘Devil task’. At the beginning of the explicit 

training, the performance of eight students corresponded to the two lowest levels of 

working backward. These students only partially used the given target state as their 

initial value, and there was no reversal of the operations (see Figure 7 and Figure 8). 

After the explicit training, the results of the post-test showed that 10 students were 

able to solve the task partially correct (WB3) or correct (WB4). All of these students 

reversed both operations in a proper manner. However, two students forgot a subtask 

(one more crossing of the bridge) and for that reason did not achieve the correct end 

result. Only two students (#2, #4) were able to solve both tasks correctly (WB4) before 

and after the explicit training. Overall, it can be said that the ability to problem solve 

by working backward increased in seven of the remaining 12 students. For instance, 

students #7 and #14 did not initially show any strategic approaches. At the end of the 

explicit training, they were able to complete the corresponding task by using the 

working backward strategy. A direct comparison between the other tasks on both tests 

was not possible, because they were neither similar in context nor structure.  
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Table 7.  Comparison of students’ performance on similar tasks (• ‘Four gates task’, • ‘Devil’s task’) 

Student 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

NS       •     •  • 
WF     •       •   
WB1 •  •  •    • •   •  
WB2 •     •  •  •     
WB3         •  •    
WB4  •• • ••  • • •   •  • • 

 

The individual students’ achievements are considered in Table 8 on the basis of a 

short interview. For this purpose, four children were selected, regardless of their 

gender. Additionally, Table 5 and Table 6 are compared and the self-assessment of the 

students is used as an interpretation aid. 

Table 8.  Assessment of the individual achievement when problem-solving by working backward 

Student Assessment of individual achievement with respect to the level of working backward 

#2 In the pre-test, the student used the working backward strategy in all tasks, whereby she 
reached WB2 level once (‘Circle task’) and WB4 level twice (‘Four gates task’, ‘Candy task’). In 
the post-test she solved all tasks by using the working backward strategy, performing on 
WB4 level. In the interview, it became clear that she already knew how to use the working 
backward strategy before the explicit training. For that reason, it was easy for her to solve 
the reversing tasks. 

#8 In the pre-test, the students used the working backward strategy in all tasks, whereby he 
reached the WB2 level once (‘Four gates task), and WB4 level twice (‘Candy task’, ‘Circle 
task’). The results of the post-test showed performance improvement when solving similar 
tasks (from WB2 to WB4 level). In the interview, he reported that he found it difficult to work 
backward and was often confused when working on reversing tasks. 

#12 In the pre-test, the students used the working forward strategy in all tasks. On the other 
hand, two tasks in the post-test were solved by using the working backward strategy, namely 
‘Dogbone task’ (WB3) and ‘Rectangle task’(WB4). Her solution to the ‘Devil’s task’ did not 
allow any conclusions with respect to used problem-solving strategy. In the interview, she 
reported that she often got confused when working on the reversing tasks, and it was 
difficult for her to reproduce her thoughts in reverse. 

#14 In the pre-test, the student worked on two tasks (‘Four gates task’, ‘Circle task’) without 
using a specific heuristic strategy, whereas she solved the ‘Candy task’ by using working 
backward strategy (WB4). In the post-test, she solved two tasks correctly by using the 
working backward strategy, namely ‘Devil’s task’ and ‘Rectangle task’ (WB4). She also 
reversed her thoughts when working on the ‘Dogbone task’, but reached WB3 level only.  

 

Reflection sheets of all students on the topic of “heuristic strategies” provided 

additional information on the extent to which they found the working backward 

strategy useful. Four students rated the strategy as easy, whereas seven students as 
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difficult. The rest abstained from reflecting on the strategy. Moreover, six students 

reported that they would use this strategy in the future. Self-reflection of four selected 

students was consistent with their performance on the pre- and post-test. 

6 Discussion and conclusions 

For almost one school year, the students took part in explicit heuristic training. Within 

the WoBa study, a special focus was given to problem-solving by working backward, 

and the students’ ability to work backward was evaluated. At the beginning of the 

explicit training, almost all students’ approaches showed instances of working 

backward. They intuitively reversed their thought processes when solving the 

reversing tasks. Overall, every student used this strategy in the post-test, with as many 

tasks as in the pre-test were not solved backward. There may be various reasons for 

this. The students used both working forward and backward strategy when solving the 

logic task (‘Dogbone task’). Consequently, no arithmetic or geometric skills were 

required, but only the reversibility of the trains of thought. On the other hand, this 

task can also have been perceived as difficult, since such a prototypical task was not 

dealt with within the explicit training (see Figures 3-6). Should the former be the case, 

then this would be a distinguishing feature with regard to mental agility and with it 

developed mathematical ability (Gullasch, 1967). Simple reversing task (‘Candy task’), 

as well as the symbolic task (‘Circle task’), were intuitively solved by using the working 

backward strategy compared to complex reversing tasks (‘Four gates task’, ‘Devil’s 

task’). 

Before the explicit training, the students were at different stages of development 

with respect to reversibility. Although the students found it difficult to reverse trains 

of thought and reproduce operations in reverse, the results show improvement with 

respect to different levels of working backward during problem-solving. After the 

explicit training, students were able to further develop their skills and reach the next 

stage of development (Bruder & Collet, 2011; Wygotski, 1964). It can be also assumed 

that the students were able to detach the structure of the heuristic strategy from the 

task context and transfer it to similar tasks (Lompscher, 1975). This became 

particularly evident when comparing students’ performance on similar tasks, namely 

the ‘Four gates task’ and the ‘Devil’s task’. Consequently, it can be concluded that 

mathematically-interested students could train their mental agility, and thus, 

compensate for deficits in the area of mental activity by using the heurisms imparted 
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by the SymPa project (Bruder, 2014; Kuzle & Bruder, 2016; Lompscher, 1975). 

Moreover, the ability to reverse thought processes or to reproduce these in reverse 

when confronted with reversing tasks may not only be reserved for gifted students 

(Aßmus, 2010a, 2010b) but also mathematically-interested students can successfully 

develop this ability. Also, the willingness to apply the heuristic strategies, which were 

mentioned in the students’ self-reflection, helped promote the intellectual ability and 

compensate for deficits (Bruder, 2014; Lompscher, 1975).  

In the SymPa project we have consciously decided to develop theory-based 

materials which were evaluated in a school setting in order to simultaneously (1) 

(develop) and evaluate the suitability of practice-oriented materials, (2) to develop a 

sustainable problem-solving teaching concept, and (3) to gain insights into individual 

students’ learning processes. The latter relates to the cognitive level (Collins et al., 

2004) of DBR. The results have shown that a synergy of the teaching concept and the 

problem-solving material allowed mathematically-interested students access to 

problem-solving, specifically to working backward strategy.  

Despite positive results in the context of problem-solving by working backward, 

some drawbacks need to be discussed. This study was an exploratory qualitative study 

using a specific sample in the context of additional mathematics lessons on problem-

solving on a voluntary basis. Hence, the results are limited to mathematically-

interested Grade 5 students. Additionally, a small sample was used, so not all 

processes were reported. These limitations suggest a possible next step in research. 

Since the problem-solving materials were developed for Grade 5 and 6 students, 

future studies may look into the extent to which they are implementable in regular 

mathematics lessons rather than in special mathematics contexts. Since the tasks 

cover different mathematical areas, they may be implemented flexibly. Moreover, the 

effect of the materials on the development of all students’ problem-solving 

competence, not only with respect to the strategy of working backward, is an area 

highly important to investigate taking into consideration mathematics standards 

worldwide (e.g., FNBE, 2004, 2014; KMK, 2005; NCTM, 2000). It is also 

questionable whether a long-term intervention on the subject of working backward 

would have influenced the students’ results or promoted their mental agility in the 

area of logic tasks. Additionally, the pre- and post-test tasks were selected according 

to the mathematics curriculum (RLP, 2015). During the post-test, however, it became 

clear that not all students were proficient in calculating the perimeter of rectangles, 

as this was not the content of the previous school year. This aspect had a significant 
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influence on the results of the post-test. Lastly, the pre- and post-test were 

deliberately structured in such a way that they did not only consist of similar tasks in 

order to avoid routine processing of the tasks. However, a deeper insight into the 

development of reversibility between pre-/post-testing would have been provided by 

other similar tasks. This direction may be fruitful for future studies. 

The SymPa project demonstrated the fruitfulness of the synergy between practice 

(i.e., school, practitioners) and theory (i.e., research, university staff). From the 

perspective of practice, the school gained high-quality material on problem-solving 

which allowed supporting needs of students interested in mathematics. From the 

perspective of theory, a framework for different levels of working backward was 

developed. This may also be used by practitioners in order to evaluate students’ levels 

of working backward as well as to promote their development of reversibility of 

thought. Additionally, the study findings reflect a great potential for problem-solving 

in school mathematics. Both the developed materials using design-based research-

approach and the teaching of heurisms in the classroom stipulated the development 

of students’ flexibility of thought when problem-solving by working backward. The 

majority of students improved their ability to work backward, progressing to the next 

or second next level. In addition, almost all students reached the highest level of 

working backward. Thus, the study results show that the theory-based and practice-

oriented materials using DBR approach not only allow sustainable implementation in 

practice (Kuzle, 2017a, 2017b) but also promote the development of targeted problem-

solving abilities. Further research, however, is needed to evaluate the utility of the 

materials with respect to general problem-solving ability.  

That DBR as a research paradigm may support gradual improvements in both 

practice and theory, and that with it further theoretical and practical developments 

are possible, preclude no doubts. 
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